非碱性氮化物催化裂化转化规律及反应化学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STUDY ON REACTION CHEMISTRY OF NON-BASIC NITROGEN COMPOUNDS IN FCC PROCESS
  • 作者:王迪 ; 李福超 ; 魏晓丽 ; 张久顺 ; 代振宇
  • 英文作者:Wang Di;Li Fuchao;Wei Xiaoli;Zhang Jiushun;Dai Zhenyu;SINOPEC Research Institute of Petroleum Processing;
  • 关键词:催化裂化 ; 非碱性氮化物 ; 吲哚 ; 转化规律
  • 英文关键词:fluid catalytic cracking;;non-basic nitrogen compound;;indole;;conversion rule
  • 中文刊名:SYLH
  • 英文刊名:Petroleum Processing and Petrochemicals
  • 机构:中国石化石油化工科学研究院;
  • 出版日期:2018-03-12
  • 出版单位:石油炼制与化工
  • 年:2018
  • 期:v.49
  • 语种:中文;
  • 页:SYLH201803007
  • 页数:5
  • CN:03
  • ISSN:11-3399/TQ
  • 分类号:28-32
摘要
采用小型固定流化床装置,考察以吲哚为代表的非碱性氮化物对催化裂化过程的影响,以及非碱性氮化物在催化裂化过程中的分布规律和反应化学。结果表明:非碱性氮化物的加入会导致反应转化率下降,并影响产物分布,且加入量越大,影响越大;吲哚经过催化裂化反应,原料油中54.15%的氮分布于柴油馏分中,24.88%的氮转化到焦炭中,12.58%的氮分布于汽油馏分中,4.46%的氮转化为氨气,进入重油馏分中的氮不足5%;吲哚在催化裂化过程中最易发生烷基化反应,吲哚分子中氮环更易通过氢转移反应被饱和,进而发生开环裂化反应生成苯胺类氮化物和氨气;烯烃和氨气可通过环化缩合反应生成苯胺及喹啉类六元氮杂环化合物;小分子氮杂环化合物可发生烷基化、环化缩合反应生成大分子氮化物。
        The impact of non-basic nitrogen compounds represented by indole on FCC reaction and the contribution and conversion rule of these compounds during the process was studied in a fixed fluidized bed(FFB).The results showed that the addition of non-basic nitrogen compounds reduces the conversion of FCC process,and influences the product distribution.The higher the nitrogen content in feedstock,the greater the influence on the reactions.In the catalytic cracking reaction of indole,the nitrogen in the raw material oil was distributed in gasoline distillates,diesel distillates,coke and heavy oil fractions were 12.58%,54.15% and 24.88% respectively.In addition,4.46% nitrogen was converted into ammonia,and the nitrogen in the heavy oil distillate was less than 5%.Indole is the most susceptible to alkylation during catalytic cracking.Due to hydrogen transfer reaction,the nitrogen-containing heteroatomic ring of indole molecule is saturated,and then converted further into aniline or ammonia through the ring-opening cracking reaction.Ammonia reacts with olefin to form aniline and further quinoline.The macromolecular nitrogen compounds are generated from small molecule nitrogen compounds by cyclization and condensation reactions.
引文
[1]袁起民,王屹亮,李春义,等.焦化蜡油两段提升管催化裂化研究[J].中国石油大学学报(自然科学版),2007,31(1):122-126
    [2]刘文惠,梁咏梅,刘耀芳,等.重油催化裂化汽油组成对诱导期的影响[J].石油学报(石油加工),2002,18(1):6-13
    [3]李会鹏,沈健,赵华,等.催化裂化柴油安定性研究进展[J].炼油技术与工程,2007,37(11):15-20
    [4]成慧禹.炼油装置高温、低温腐蚀流程图[D].西安:西安石油大学,2014
    [5]朴在栋.催化裂化装置及系统腐蚀预测[D].西安:西安石油大学,2012
    [6]吴晓青.我国大气氮氧化物污染控制现状存在的问题与对策建议[J].中国科技产业,2009(8):13-16
    [7]袁起民,王屹亮,李春义,等.焦化蜡油催化裂化产物氮分布的研究[J].燃料化学学报,2007,35(3):375-379
    [8]Barth J O,Jentys A,Lercher J A.On the nature of nitrogencontaining carbonaceous deposits on coked fluid catalytic cracking catalysts[J].Ind Eng Chem Res,2004,43(10):2368-2375
    [9]Caeiro G,Magnoux P,Lopes J M,et al.Deactivating effect of quinoline during the methylcyclohexane transformation over H-USY Zeolite[J].Applied Catalysis A:General,2005,292:189-199
    [10]Young G W.Fluid catalytic cracker catalyst design for nitrogen tolerance[J].The Journal of Physical Chemistry,1986,90(20):4894-4900
    [11]陈小平.从煤焦油洗油中提取吲哚的研究[D].武汉:武汉科技大学,2004
    [12]张毅,薛永强,王志忠.从洗油中分离喹啉的新方法[J].应用化工,2009,38(1):145-147
    [13]王吉红,王涛,唐恒丹,等.共沸法回收吡啶的研究和设计[J].化学工程,2005,33(4):5-7
    [14]于道永,徐海,阙国和,等.非碱氮化合物吲哚催化裂化转化规律的研究[J].石油学报(石油加工),2004,20(1):22-28
    [15]阙国和.石油组成与转化化学[M].东营:中国石油大学出版社,2008:100-177
    [16]Vistisen P,Zeuthen P.Reactions of organic sulfur and nitrogen compounds in the FCC pretreater and the FCC unit[J].Ind Eng Chem Res,2008,47(21):8471-8477
    [17]于煦.四氢呋喃和氨气气相催化合成四氢吡咯的研究[D].杭州:浙江大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700