偏二甲肼与二氧化氮气相反应的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Gas Phase Reaction between UDMH and NO_2
  • 作者:詹翔 ; 崔村燕 ; 周宵灯 ; 辛腾达 ; 韩向阳
  • 英文作者:Zhan Xiang;Cui Cun-yan;Zhuo Xiao-deng;Xin Teng-da;Han Xiang-yang;Space Engineering University;
  • 关键词:偏二甲肼 ; 四氧化二氮 ; 1 ; 1 ; 4 ; 4-四甲基-2-四氮烯 ; 生成焓 ; 数值模拟
  • 英文关键词:UDMH;;NTO;;1,1,4,4-Tetramethyl-2-tetrazene;;enthalpy of formation;;numerical simulation
  • 中文刊名:DDYH
  • 英文刊名:Missiles and Space Vehicles
  • 机构:航天工程大学;
  • 出版日期:2019-02-10
  • 出版单位:导弹与航天运载技术
  • 年:2019
  • 期:No.366
  • 语种:中文;
  • 页:DDYH201901014
  • 页数:6
  • CN:01
  • ISSN:11-3263/V
  • 分类号:63-67+83
摘要
为了分析偏二甲肼(UDMH)与四氧化二氮(NTO)推进剂气相泄漏后的反应情况,研究了液体推进剂贮存条件下的反应机理。采用量子化学的方法计算出生成物—1,1,4,4-四甲基-2-四氮烯(TMTZ)的生成焓,并应用数值模拟方法对偏二甲肼与二氧化氮的反应过程进行仿真,将数值模拟结果与试验数据进行对比。结果表明:TMTZ分子的生成焓为-369.15kJ/mol,该反应的数值模拟结果与试验值的误差均在合理范围内;该气相反应机理可为推进剂的相关研究提供参考。
        In order to analyze the reaction of UDMH and NTO propellant after gas phase leakage, Reaction mechanism of liquid propellant under storage conditions was analyzed. The enthalpy of formation of the TMTZ was calculated by quantum chemistry method, and The reaction was simulated in FLUENT software, besides the calculated results were compared and analyzed with the experimental values. The results shows that The enthalpy of formation of TMTZ molecule is-369.15 k Jmol-1 and deviation between numerical simula-tion and experimental data is within a reasonable range. The gas-phase reaction mechanism can provide a reference for the related research of propellants in the future.
引文
[1]蒋俭,张金,张康征.火箭推进剂监测防护与污染治理[M].长沙:国防科技大学出版社,1993.Jiang Jian,Zhang Jin,Zhang Kangzheng.Monitoring and protection of rocket propellants and pollution control[M].Changsha:National University of Defense Technology Press,1993.
    [2]郑治仁.发射井内推进剂着火爆炸问题[J].中国航天,1984(6):30-33.Zheng Zhiren.Problem of propellant fire and explosion in silo[J].China aerospace,1984(6):30-33.
    [3]Tuazon E C,et al.Gas-phase reaction of 1,1-dimethylhydrazine with nitrogen dioxide[J].The Journal of Physical Chemistry,1983,87(9):1600-1605.
    [4]Payen L,et al.Quantification and kinetic study in plasma and tissues of(E)-1,1,4,4-tetramethyl-2-tetrazene,a liquid propellant and a transformation product of 1,1-dimethyl hydrazine[J].Analytical&Bioanalytical Chemistry,2015,407(22):1-9.
    [5]Dhenain A,et al.(E)-1,1,4,4-tetramethyl-2-tetrazene(TMTZ):a prospective alternative to hydrazines in rocket propulsion[J].Chemistry:AEuropean Journal,2017,23(41):9897-9907.
    [6]Gilloux T,et al.Azidonation derivatives of 1,1’,4,4’-tetramethyl-2-tetrazene as nitrogen-rich compounds for NTO/MMH replacement-Synthesis,characterization and properties[R].AIAA Joint Propulsion Conference,2014-3419,2014.
    [7]谢慧,王煊军,慕晓刚.3种典型叠氮胺类化合物的生成焓计算[J].化学推进剂与高分子材料,2017,15(5):63-66.Xie Hui,Wang Xuanjun,Mu Xiaogang.Calculation of the enthalpy of formation of 3 typical azidines[J].Chemical Propellant and Polymer Materials,2017,15(5):63-66.
    [8]骆艳娇.多氮含能材料生成焓的密度泛函理论估算[D].西安:陕西师范大学,2015.Luo Yanjiao.Estimation of enthalpy of formation of multi nitrogen energetic materials by density functional theory[D].Xi`an:Shanxi Normal University,2015.
    [9]卫涛.高氮含能化合物的分子设计与性能预测[D].南京:南京理工大学,2015.Wei Tao.Molecular design and performance prediction of high nitrogen energetic compounds[D].Nanjing:Nanjing University of Science and Technology,2015.
    [10]邱丽美,等.由原子化反应法求算高能化合物的生成热[J].含能材料,2008,16(6):647-651.Qiu Limei,et al.By atomic reaction method,we calculate the heat of formation of energetic compounds[J].Energetic Materials,2008,16(6):647-651.
    [11]Rice B M,Pai S V,Hare J.Predicting heats of formation of energetic materials using quantum mechanical calcu-lations[J].Combustion&Flame,1999,118(3):445-458.
    [12]袁汝明,傅钢,韩国彬.应用理论化学方法预测有机分子的标准摩尔生成焓[J].大学化学,2014,29(3):50-54.Yuan Ruming,Fu Gang,Han Guobin.Application of theoretical chemistry method to predict standard molar enthalpy of formation of organic molecules[J].University Chemistry,2014,29(3):50-54.
    [13]Inada Y,Orita H.Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded com-plexes:Evidence of small basis set superposition error compared to Gaussian basis sets[J].Journal of Computational Chemistry,2008,29(2):225-232.
    [14]Rayne S,Forest K.Gas phase isomerization enthalpies of organic compounds:A semiempirical,density functional theory,and ab initio post-hartree-fock theoretical study[J].Journal of Molecular Structure Theochem,2010,948(1):102-107.
    [15]Curtiss L A,et al.Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J].Journal of Chemical Physics,1997,106(3):1063-1079.
    [16]Sklavounos S,Rigas F.Simulation of coyote series trials-Part I:CFDestimation of non-isothermal LNG releases and comparison with box-model predictions[J].Chemical Engineering Science,2006,61:1434-1443.
    [17]黄琴,蒋军成.液化天然气泄漏扩散模型比较[J].中国安全生产科学技术,2007,3(5):3-6.Huang Qin,Jiang Juncheng.Comparison of liquefied natural gas leakage and diffusion models[J].China Safety Production Science and Technology,2007,3(5):3-6.
    [18]黄江平,等.城市重气扩散模型SLAB-URBAN外场实验模拟验证[J].安全与环境学报,2010,10(5):181-184.Huang Jiangping,et al.Urban heavy gas dispersion model SLAB-URBANfield experiment simulation verification[J].Safety and Environment Journal,2010,10(5):181-184.
    [19]Chang J C,Hanna S R.Air quality model performance evaluation[J].Meteorology and Atm-ospheric Physics,2004,87(1):167-196.
    [20]Saad M A,Detweiler M B,Sweeney M A.Analysis of reaction products of Ni-trogen tetroxide with hydrazines under nonignition conditions[J].AIAA Journal,1972,10(8):1073-1078.
    [21]巴延涛,等.甲基肼/四氧化二氮反应化学动力学模型构建及分析[J].物理化学学报,2014,30(6):1042-1048.Ba Yantao,et al.Construction and analysis of reaction kinetics model for methyl hydrazine/nitrogen tetroxide[J].Chinese Journal of Physical Chemistry,2014,30(6):1042-1048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700