BEAVRS基准模型热零功率状态的JMCT分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:JMCT Monte Carlo analysis of BEAVRS benchmark:hot zero power results
  • 作者:李刚 ; 邓力 ; 张宝印 ; 李瑞 ; 史敦福 ; 上官丹骅 ; 胡泽华 ; 付元光 ; 马彦
  • 英文作者:Li Gang;Deng Li;Zhang Bao-Yin;Li Rui;Shi Dun-Fu;Shangguan Dan-Hua;Hu Ze-Hua;Fu Yuan-Guang;Ma Yan;Institute of Applied Physics and Computational Mathematics;CAEP Software Center for High Performance Numerical Simulation;
  • 关键词:pin-by-pin ; BEAVRS模型 ; 蒙特卡罗 ; JMCT程序
  • 英文关键词:pin-by-pin;;BEAVRS model;;Monte Carlo;;J Monte Carlo transport code
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京应用物理与计算数学研究所;中国工程物理研究院高性能数值模拟软件中心;
  • 出版日期:2016-02-02 13:45
  • 出版单位:物理学报
  • 年:2016
  • 期:v.65
  • 基金:能源局06专项资助(批准号:2015ZX06002008);; 国防科工局核能开发项目(批准号:科工技[2012]1523);; 国家高技术研究发展计划(批准号:2012AA01A303);; 中国工程物理研究院基金(批准号:2014B0202029)资助的课题~~
  • 语种:中文;
  • 页:WLXB201605007
  • 页数:10
  • CN:05
  • ISSN:11-1958/O4
  • 分类号:52-61
摘要
使用JMCT(J Monte Carlo Transport Code)对来自MIT的全堆芯pin-by-pin精细建模的国际基准模型BEAVRS的热零功率(HZP)状态进行了模拟计算,并与测试数据进行了对比和分析.比较的物理量包括临界本征值、控制棒价值、反应性温度系数、轴向积分的全堆探测器测量值和不同位置四个组件轴向相对功率密度分布.HZP状态下不同控制棒位置插入和硼浓度的临界本征值计算,JMCT结果与理论值1.000的误差小于0.2%,控制棒价值计算结果与测量值符合.JMCT对轴向积分的探测器径向相对功率分布和四个组件的轴向归一化的探测器的计算结果与测量值进行了比较和分析,计算结果与测量值一致,同时清晰地展示了模型增加格架后,轴向功率曲线在相应位置出现下凹的现象.此外,JMCT给出了轴向积分的组件径向相对功率密度分布和轴向相对功率最大处(Z轴位置)的pin径向相对功率密度分布,并与国际知名程序MC21结果进行了对比,两个图像都符合得非常好.随着计算机与并行计算的高速发展,蒙特卡罗程序开始从传统的反应堆校验工具向反应堆设计工具转变.
        J Monte Carlo transport code(JMCT), a new three-dimentional(3D) Monte Carlo transport code, is introduced in this paper. The code is developed on the basis of 3D geometry infrastructure JCOGIN and composed of multilayer modules. JMCT is capable of simulating the collision of particles with multi-group energy or providing energy data libraries. Two forms of parallelism supported in JMCT are domain decomposition and domain replication. The code has very good expansibility. JMCT Monte Carlo results have been compared with hot zero power(HZP) measurements of BEAVRS benchmark model from the MIT Computational Reactor Physics Group. Included in the comparisons are the eigenvalues, control rod bank worths, isothermal temperature coefficients, axially integrated full core detector measurements, axial detector profiles, etc. The eigenvalues for the HZP condition with different control rods positions and boron concentrations are calculated and the error is less than 0.2% compared with the theoretical error 1.000. The results of JMCT for isothermal temperature coefficients are also listed together with MC21 results and measured data.Each calculation for the eigenvalue is run by 1000 cycles in total, discarding 600 cycles, tracking 4 million neutrons each cycle. It takes 5.3–5.7 hours to run on 200 CPU cores. The JMCT results of axially integrated radial detector relative power distribution(RPD) and axial normalized detector signal are compared with the measured data. Power depressions from grid spacers are clearly seen in the JMCT results and accord with the measured data. The JMCT results of axially integrated assembly RPD power distribution are in good agreement with MC21 results, the maximum difference being3.173% for 193 assemblies. So is the result of pin power RPD relative power at the axial elevation of peak power; the minimum relative power RPD 0.278 of JMCT is comparable to 0.283 of MC21, and the max relative power RPD 2.422 of JMCT is comparable to 2.452 of MC21. The calculation for RPD is run with 3000 inactive cycles and 5000 active cycles, tracking 4 million particles each cycle. It takes about 4.8 days to run on 200 CPU cores. Shannon entropy is used to demonstrate that the fission source distribution is converged after 3000 inactive cycles. With the development of computers and parallel computing, the Monte Carlo method can be used in reactor design instead of benchmarking other calculated results.
引文
[1]Forrest B,Brian K,David B 2012 Proceedings of PHYSOR 2012-Advances in Reactor Physics-Linking Research,Industry,and Education Knoxville,Tennessee,USA,April 15-20,2012
    [2]Du S H,Zhang S F,Feng T G,Wang Y Z,Xing J R 1989Computer Simulation of Transport Problems(Changsha:Hunan Science and Technology Press)p304(in Chinese)[杜书华,张树发,冯庭桂,王元璋,邢静茹1989输运问题的计算机模拟(长沙:湖南科技出版社)第304页]
    [3]Pei L C,Zhang X Z 1980 Monte Carlo Methods and Application in Particle Transportation(Beijing:Science Press)p1(in Chinese)[裴鹿成,张孝泽1980蒙特卡罗方法及其在粒子输运问题中的应用(北京:科学出版社)第1页]
    [4]Deng L,Li G 2010 Chin.J.Comput.Phys.27 791(in Chinese)[邓力,李刚2010计算物理27 791]
    [5]Bill M 2007 M&C+SNA,Monterey California,USA,April 15-19,2007
    [6]Forrest B,William M 2010 PHYSOR 2010,Pittsburgh,Pennsylvania,USA,May 9-14 2010
    [7]Kord S 2003 M&C+SNA Gatlinburg,Tennessee,USA,April 6-11,2003
    [8]Jan Eduard H,William M,Bojan P,Benchmark Specifications Revision 1.1,http://www.nea.fr/dbprog/Monte Carlo Performance Benchmark.htm[2011-6-20]
    [9]Kord S,Benoit F 2013 M&C 2013 Sun Valley,Idaho,USA,May 5-9,2013 p1809
    [10]Daniel K,Thomas S 2012 Proceedings of PHYSOR 2012Advances in Reactor Physics-Linking Research,Industry,and Education Knoxville,Tennessee,USA,April15-20,2012
    [11]Daniel K,Brian A 2013 M&C 2013 Sun Valley,Idaho,USA,May 5-9,2013 p2962
    [12]Daniel K,Brian A,Paul R 2014 PHYSOR 2014 Kyoto,Japan,September 28-October 3,2014
    [13]Li G,Zhang B Y,Deng L 2013 High Power Laser and Particle Beams 25 158(in Chinese)[李刚,张宝印,邓力2013强激光与粒子数25 158]
    [14]Li G,Zhang B Y,Deng L 2013 ANS Transactions 1091425
    [15]Zhang B Y,Li G,Deng L 2013 High Power Laser and Particle Beams 25 173(in Chinese)[张宝印,李刚,邓力2013强激光与粒子数25 173]
    [16]Nicholas H,Bryan H,2013 BEAVRS,Release rev.1.0.1http://crpg.mit.edu/pub/beavrs[2014-7-7]
    [17]Taro U,Forrest B 2005 Nuclear Science and Engineering149 38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700