C_6H_2(OH)_3CH_3氧化成羟基苯甲酸反应路径的DFT研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A DFT study on the reaction pathway for the oxidation of C_6H_2(OH)_3CH_3 to hydroxyl benzoic acid
  • 作者:周建 ; 冉景煜 ; 张力
  • 英文作者:ZHOU Jian;RAN Jing-yu;ZHANG Li;Key Laboratory of Low-Grade Energy Utilization Technologies and Systems,Chongqing University;
  • 关键词:煤氧化液化 ; 羟基苯甲酸 ; 密度泛函 ; 反应路径
  • 英文关键词:lignite liquefaction and oxidation;;hydroxyl benzoic acid;;density functional theory;;reaction pathways
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:重庆大学低品位能源利用技术及系统教育部重点实验室;
  • 出版日期:2018-02-15
  • 出版单位:燃料化学学报
  • 年:2018
  • 期:v.46
  • 语种:中文;
  • 页:RLHX201802009
  • 页数:9
  • CN:02
  • ISSN:14-1140/TQ
  • 分类号:72-80
摘要
运用密度泛函(DFT)理论,采用Materials Studio 8.0,用GGA/BP方法研究了C_6H_2(OH)_3CH_3氧化成羟基苯甲酸的反应路径。结果表明,甲基上的氢原子被氧化成羟基以及羟基被氧化为醛基及醛基被氧化成羧基均为放热过程。分子C_6H_2(OH)_3CH_3中甲基氧化成羧基的主路径为三个氢原子氧化反应路径,其路径为C_6H_2(OH)_3CH_3+3O→C6H2(OH)3C(OH)3→C6H2(OH)3COOH+H2O,该路径受限于羟基直接被氧化成羧基过程,需克服130 k J/mol的反应势垒,反应速率常数对数ln(k)为-22.96 s-1;醛基、羟基优先被氧化成羧基的顺序为:-CHO>-C(OH)3>-HC(OH)2>-H2C(OH);提高反应温度、氧气浓度均有利于羟基苯甲酸的生成,适当的催化剂有利于促进整个反应的进行。
        The reaction pathways for the oxidation of C_6H_2(OH)_3CH_3 oxidizing into hydroxyl benzoic acid were investigated by using density functional theory( DFT) method at the GGA/BP levels with Materials Studio8.0 program. The results illustrated that the reactions for the oxidation of hydrogen on the methyl into hydroxyl,the hydroxyl to aldehyde,and then the aldehyde to carboxylic are all exothermic. As the main path,the oxidation of C_6H_2(OH)_3CH_3 to hydroxyl benzoic acid follows: C_6H_2(OH)_3CH_3+ 3 O → C6 H2( OH)3 C( OH)3→ C_6H_2(OH)_3 COOH + H2 O; as the controlling step,the conversion of hydroxyl to carboxyl exhibits a high energy barrier( 130 k J/mol) and a lowreaction rate( ln( k) =-22.96 s-1). The oxidation of hydroxyl and aldehyde to carboxylic acid follows the sequence of-CHO >-C(OH)3>-HC( OH)2>-H2 C( OH). An increase in the temperature and oxygen concentration is beneficial to the formation of hydroxyl benzoic acid, whereas appropriate catalyst can promote the whole reaction process.
引文
[1]高建业.煤液化燃料替代石油的开发应用[J].煤气与热力,2007,27(1):37-43.(GAO Jian-ye.The development of alternative fuels for coal liquefaction fuels[J].Gas Heat,2007,27(1):37-43.)
    [2]SIMSEK E H,KARADUMAN A,OLCAY A.Liquefaction of turkish coals in tetralin with microwaves[J].Fuel Process Technol,2001,73(2):111-125
    [3]AMESTICA L A,WOLF E E.Catalytic liquefaction of coal with supercritical water/CO/solvent media[J].Fuel,1986,65(9):1226-1233
    [4]王春萍.我国煤液化概况[J].化学工程师,2005,19(12):40-41(WANG Chun-ping.General situation of coal liquefaction in china[J].Chem Eng,2005,19(12):40-41.)
    [5]ESPINOZA R L,STEYNBERG A P,JAGER B,VOSLOO A C.Low temperature Fischer-Tropsch synthesis from a sasol perspective[J].Appl Catal A:Gen,1999,186(1/2):13-26.
    [6]STEYNBERG A P,ESPINOZA R L,JAGER B,VOSLOO A C.High temperature Fischer-Tropsch synthesis in commercial practice[J].Appl Catal A:Gen,1999,186(1/2):41-54.
    [7]吴春来.南非SASOL的煤炭间接液化技术[J].煤化工,2003,(2):3-6.(WU Chun-lai.Coal indirect liquefaction technology of south africa's SASOL[J].Coal Chem Ind,2003,(2):3-6.)
    [8]VAN WECHEM V M H,SENDEN M M G.Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process(SMDS)[J].Catal Today,1991,8(3):43-71.
    [9]相宏伟,唐宏青,李永旺.煤化工工艺评述与展望Ⅳ.煤间接液化技术[J].燃料化学学报,2001,29(4):289-298.(XIANG Hong-wei,TANG Hong-qing,LI Yong-wang.Review and prospect of coal chemical technologyⅣ.Coal indirect liquefaction technology[J].J Fuel Chem Technol,2001,29(4):289-298.)
    [10]LIU Z X,LIU Z C.GC/MS analysis of water-soluble products from the mild oxidation of longkou brown coal with H2O2[J].Energy Fuels,2003,17(2):424-426.
    [11]KOUICHI M,KAZUHIRO M.New oxidative degradation method for producing fatty acids in hgh yields and high selectivity from low-rank coals[J].Energy Fuels,1996,10(6):1196-1201.
    [12]JUN-ICHIRO H.Depolymerization of lower rank coals by low-temperature O2oxidation[J].Energy Fuels,1997,11(1):227-235.
    [13]KAZUHIRO M.Extraction of low-rank coals oxidized with hydrogen peroxide in conventionally used solvents at room temperature[J].Energy Fuels,1997,11(4):825-831.
    [14]冯波,其鲁,张敬华.弱氧化环境下褐煤氧化产物的定性分析[J].冶金分析,2009,29(1):21-24.(FENG Bo,QI Lu,ZHANG Jing-hua.Qualitative and metallurgical analysis of lignite oxidation products in weak oxidized environment[J].M etall Anal,2009,29(1):21-24.)
    [15]YANG F,HOU Y,WU W,WANG Q,NIU M G,REN S H.The relationship between benzene carboxylic acids from coal via selective oxidation and coal rank[J].Fuel Process Technol,2017,160:207-215.
    [16]WANG W,HOU Y,NIU M,WU T,WU W Z.Production of benzene polycarboxylic acids from bituminous coal by alkali-oxygen oxidation at high temperatures[J].Fuel Process Technol,2013,110(6):184-189.
    [17]赵宇薇.褐煤碱-氧氧化的产物分析及其结构的基础研究[D].北京:北京化工大学,2015.(ZHAO Yu-wei.Product and structure analysis of basic research for lignite oxidation in oxygen alkaline environment[D].Beijing:Beijing University of Chemical Technology,2015.)
    [18]汪文化.煤炭、生物质选择性催化氧化制备化学品的研究[D].北京:北京化工大学,2013.(WANG Wen-hua.The research of selective catalytic oxidation for preparation chemicals by coal and biomass[D].Beijing:Beijing University of Chemical Technology,2013.)
    [19]YANG F,HOU Y,WU W,WANG Q.A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids[J].Fuel,2017,189:408-418.
    [20]吴桐.多种煤碱氧化制备苯羧酸及其产物分离的研究[D].北京:北京化工大学,2014.(WU Tong.The study of preparation of Benzene carboxylic acid and its separation by kinds of coal oxidation in oxygen alkaline[D].Beijing:Beijing University of Chemical Technology,2014.)
    [21]WANG W,HOU Y,WU W,NIU M G.Simultaneous production of small-molecule fatty acids and benzene polycarboxylic acids from lignite by alkali-oxygen oxidation[J].Fuel Process Technol,2013,112(4):7–11.
    [22]朱培之,高晋生.煤化学[M].上海:上海科技出版社.1984.(ZHU Pei-zi,GAO Jin-shen.Coal Chemistry[M].Shanghai:Shanghai Scientific&Technical Publishers,1984.)
    [23]虞继舜.煤化学[M].北京:冶金工业出版社.2000.(YU Ji-shun.Coal Chemistry[M].Beijing:Metallurgical Industry Press,2000.)
    [24]QI W,RAN J,WANG R,SHI J,DU X S,RAN M C.Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111)surface:A DFT study w ith cluster modeling[J].Comput M ater Sci,2016,111:430-442.
    [25]JAMES O O,MANDAL S,ALELE N,CHOWDHURY B,MAITY S.Lower alkanes dehydrogenation:Strategies and reaction routes to corresponding alkenes[J].Fuel Process Technol,2016,149:239-255.
    [26]DELLEY B.From molecules to solids with the DMol3 approach[J].J Chem Phys,2000,113(18):7756-7764.
    [27]PERDEW J P,CHEVARY J A,VOSKO S H,PEDERSON M R,SINGH D J,PHYS F C.Erratum:Atoms,Molecules,Solids,And Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation[M].Phys Rev B:Condens M atter,1993.
    [28]WANG B,WEI X,XIE K.Study on reaction of N-methyl-2-pyrrolidinone with carbon disulfide using density functional theory[J].J Chem Ind Eng,2004,55(4):569-574.
    [29]CLEMENS A H,MATHESON T W,ROGERS D E.Low temperature oxidation studies of dried new zealand coals[J].Fuel,1991,70(2):215-221.
    [30]GUO W,TIAN W Q,LIAN X,LIU F L,ZHOU M,XIAO P,ZHANG Y H.A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt 7,and Pt 7-x Ni x,(x=1,2,3)bimetallic clusters:A DFT study[J].Comput Theor Chem,2014,1032(5):73-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700