生活垃圾焚烧厂周边土壤硝化和反硝化功能基因分布特征及影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of Distribution Characteristics of Nitrification and Denitrification Functional Genes in Soils Surrounding A Municipal Solid Waste Incineration Plant and the Relevant Influence Factors
  • 作者:孙许超 ; 郭彦海 ; 张士兵 ; 钱雅洁 ; 刘振鸿 ; 薛罡 ; 高品
  • 英文作者:SUN Xuchao;GUO Yanhai;ZHANG Shibing;QIAN Yajie;LIU Zhenhong;XUE Gang;GAO Pin;College of Environmental Science and Engineering, Donghua University;
  • 关键词:垃圾焚烧厂 ; 硝化 ; 反硝化 ; 功能基因 ; 重金属
  • 英文关键词:municipal solid waste incineration plant;;nitrification;;denitrification;;functional genes;;heavy metals
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:东华大学环境科学与工程学院;
  • 出版日期:2018-02-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:上海市自然科学基金项目(17ZR1400400);; 中国博士后科学基金面上项目(2017M611422)
  • 语种:中文;
  • 页:TRYJ201802023
  • 页数:8
  • CN:02
  • ISSN:44-1661/X
  • 分类号:179-186
摘要
以上海某垃圾焚烧厂为研究对象,采用电感耦合等离子体发射光谱(ICP-OES)和荧光定量PCR定量分析了其周边土壤中重金属(Cd、Pb、Cu、Ni、Cr、Zn和As)含量水平,及不同硝化和反硝化功能基因丰度(AOB-amoA、nxrB、narG、nirS、norB和nosZ),并通过空间插值法分析了目标重金属与硝化和反硝化功能基因的空间分布特征,同时通过相关性分析和冗余分析探讨了土壤重金属及其理化性质对硝化和反硝化功能基因丰度变化的作用影响。结果表明,研究区域土壤中Cd、Pb、Cu、Ni、Cr、Zn和As的含量分别为0.083~1.065、15.54~43.17、18.30~65.52、24.58~41.65、65.04~201.0、58.96~153.5和0.098~5.115 mg·kg~(-1),而土壤中AOB-amoA、nxrB、narG、nirS、norB和nosZ基因丰度分别为4.89×10~2~1.34×10~5 copies·g~(-1)、5.43×10~6~5.41×10~7 copies·g~(-1)、1.21×10~6~7.91×10~6 copies·g~(-1)、3.79×10~6~7.39×10~7 copies·g~(-1)、1.61×10~5~1.33×10~7 copies·g~(-1)和1.44×10~4~2.18×10~5 copies·g~(-1)。由空间插值分析结果可知,土壤中重金属主要来源于焚烧烟气排放沉降,硝化和反硝化功能基因的空间分布特征与土壤总氮及重金属均具有相似性。相关性分析和冗余分析结果显示,除Cd和Zn外,其余重金属含量对硝化和反硝化功能基因丰度影响不显著,表明垃圾焚烧厂周边土壤中重金属污染对氮循环过程影响较小。相比之下,土壤理化性质如总有机碳、总氮等对硝化和反硝化功能基因丰度影响更显著。该研究可为相关地区垃圾焚烧厂周边土壤重金属污染控制及微生物生态风险评价提供参考。
        The contents of heavy metals(i.e., Cd, Pb, Cu, Ni, Cr, Zn and As) and quantities of nitrification and denitrification functional genes(i.e., AOB-amoA, nxrB, narG, nirS, norB and nosZ) were determined in the surface soils surrounding a municipal solid waste incineration(MSWI) plant in Shanghai by using an inductively coupled plasma optical emission spectrometer(ICP-OES) and quantitative PCR(q PCR), respectively. The spatial distribution characteristics of these heavy metals and functional genes were analyzed by a spatial interpolation method, and the effects of heavy metals and soil physicochemical properties on the quantities of nitrification and denitrification functional genes were also studied by correlation analysis and redundancy analysis. The results showed that the contents of Cd, Pb, Cu, Ni, Cr, Zn, and As were 0.083~1.065, 15.54~43.17, 18.30~65.52, 24.58~41.65, 65.04~201.0, 58.96~153.5, and 0.098~5.115 mg·kg~(-1), respectively, while the quantities of AOB-amoA, nxrB, narG, nirS, norB, and nosZ genes were 4.89×10~2~1.34×10~5 copies·g~(-1)(dry soil), 5.43×10~6~5.41×10~7 copies·g~(-1), 1.21×10~6~7.91×10~6 copies·g~(-1), 3.79×10~6~7.39×10~7 copies·g~(-1), 1.61×10~5~1.33×10~7 copies·g~(-1) and 1.44×10~4~2.18×10~5 copies·g~(-1), respectively. The results of spatial interpolation suggested that the detected heavy metals in soils mainly originated from the precipitation of incineration flue gas, and the spatial distribution characteristics of functional genes were similar to those of total nitrogen(TN) and heavy metals. Besides, the results of correlation analysis and redundancy analysis indicated that the effect of heavy metal contents on the quantities of nitrification and denitrification functional genes was not significant, except Cd and Zn, suggesting that the soil heavy metal pollution surrounding the MSWI plant had little influence on the nitrogen cycles. By contrast, a positive significant correlation was found between soil physicochemical properties such as pH, TOC and TN and the quantities of nitrification and denitrification functional genes. This study provides references for control of heavy metal pollution and microbial ecological risk assessment in soils surrounding MSWI plants.
引文
AOI Y,MASAKI Y,TSUNEDA S,et al.2004.Quantitative analysis of amo A m RNA expression as a new biomarker of ammonia oxidation activities in a complex microbial community[J].Letters in Applied Microbiology,39(6):477-482.
    BARRETT M,KHALIL M I,JAHANGIR M M R,et al.2016.Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils[J].Environmental Science and Pollution Research,23(8):7899-7910.
    BROOS K,MERTENS J,SMOLDERS E.2005.Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays:a comparative study[J].Environmental Toxicology and Chemistry,24(3):634-640.
    DIONISI H M,LAYTON A C,HARMS G,et al.2002.Quantification of Nitrosomonas oligotropha-Like ammonia-oxidizing bacteria and Nitrospira spp.from full-scale wastewater treatment plants by competitive PCR[J].Applied and Environmental Microbiology,68(1):245-253.
    GILLER K E,WITTER E,MCGRATH S P.1998.Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review[J].Soil Biology&Biochemistry,30(10-11):1389-1414.
    HUANG L Q,DONG H L,WANG S,et al.2014.Diversity and abundance of ammonia-oxidizing archaea and bacteria in diverse Chinese paddy soils[J].Geomicrobiology Journal,31(1):12-22.
    JIANG X,HOU X,ZHOU X,et al.2015.p H regulates key players of nitrification in paddy soils[J].Soil Biology and Biochemistry,81:9-16.
    LóPEZ-GUTIéRREZ J C,HENRT S,HALLET S,et al.2004.Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR[J].Journal of Microbiological Methods,57(3):399-407.
    MCMILLAN A M S,PAL P,PHILLIPS R L,et al.2016.Can p Hamendments in grazed pastures help reduce N2O emissions from denitrification?-The effects of liming and urine addition on the completion of denitrification in fluvial and volcanic soils[J].Soil Biology and Biochemistry,93:90-104.
    PESTER M,MAIXNER F,BERRY D,et al.2014.Nxr B encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira[J].Environmental Microbiology,16(10):3055-3071.
    ROSA S M,KRAEMER F B,SORIA M A,et al.2014.The influence of soil properties on denitrifying bacterial communities and denitrification potential in no-till production farms under contrasting management in the Argentinean Pampas[J].Applied Soil Ecology,75:172-180.
    STUCZYNSKI T I,MCCARTY G W,SIEBIELEC G.2003.Response of soil microbiological activities to cadmium,lead,and zinc salt amendments[J].Journal of Environmental Quality,32(4):1346-1355.
    XIA W,ZHANG C,ZENG X,et al.2011.Autotrophic growth of nitrifying community in an agricultural soil[J].The ISME Journal,5(7):1226-1236.
    YAO H,CAMPBELL C D,CHAPMAN S J,et al.2013.Multi-factorial drivers of ammonia oxidizer communities:evidence from a national soil survey[J].Environmental Microbiology,15(9):2545-2556.
    ZHOU S,SAKIYAMA Y,RIYA S,et al.2012.Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the 15N isotopic technique[J].Science of the Total Environment,430(430):93-100.
    高嵩涓,曹卫东,白金顺,等.2017.湘南红壤稻田AOA-amo A、nar G、nos Z基因丰度及其环境影响因子[J].中国土壤与肥料,(1):21-27.
    洪晨,邢奕,司艳晓,等.2014.铁矿区内重金属对土壤氨氧化微生物群落组成的影响[J].中国环境科学,34(5):1212-1221.
    史利江,郑丽波,梅雪英,等.2010.上海市不同土地利用方式下的土壤碳氮特征[J].应用生态学报,21(9):2279-2287.
    夏月,朱永官.2007.硝化作用作为生态毒性指标评价土壤重金属污染生态风险[J].生态毒理学报,2(3):273-279.
    张晶,林先贵,尹睿,等.2009.参与土壤氮素循环的微生物功能基因多样性研究进展[J].中国生态农业学报,17(5):1029-1034.
    张伟,常梅.2009.镉污染对土壤中硝态氮含量的影响[J].江西农业学报,21(3):101-102.
    中国环境监测总站.1990.中国土壤元素背景值[M].北京:中国环境科学出版社:90-497.
    钟山,高慧,张漓衫,等.2014.平原典型垃圾焚烧厂周边土壤重金属分布特征及污染评价[J].生态环境学报,23(1):164-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700