果胶-PDA微球的功能化制备及其对Th~(4+)的吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functional Preparation of Pectin-PDA Microspheres and Its Adsorption Properties for Th~(4+)
  • 作者:张永德 ; 张思月 ; 易发成 ; 乔丹 ; 贾岷明
  • 英文作者:ZHANG Yong-de;ZHANG Si-yue;YI Fa-cheng;QIAO Dan;JIA Min-ming;National Defense Key Discipline Laboratory of Nuclear Waste and Environmental Safety, Southwest University of Science and Technology;Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology;School of Materials Science and Engineering;
  • 关键词:果胶 ; 多巴胺 ; Th~(4+) ; 吸附性 ; 热稳定性 ; 水处理技术与环境保护
  • 英文关键词:pectin;;dopamine;;Th~(4+);;adsorption;;thermal stability;;water treatment technology and environmental protection
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:西南科技大学核废物与环境安全国防重点学科实验室;西南科技大学生物质材料教育部工程研究中心;西南科技大学材料科学与工程学院;
  • 出版日期:2019-03-05 13:39
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家核设施退役及放射性废物治理科研重点项目(14ZG6101);; 西南科技大学平台基金项目(14tdsc01);西南科技大学龙山学术人才科研支持计划(17LZX202,18LZX207)~~
  • 语种:中文;
  • 页:JXHG201906030
  • 页数:12
  • CN:06
  • ISSN:21-1203/TQ
  • 分类号:203-213+234
摘要
以果胶为原料,利用溶胶-凝胶法,Ca~(2+)为交联剂制备出果胶-Ca微球,使用多巴胺修饰果胶-Ca微球生成功能化的吸附剂果胶-聚多巴胺(PDA)微球。探讨了该吸附剂去除Th~(4+)的吸附性能,并利用SEM、FTIR和XPS分析了其功能化制备和吸附的机理。结果表明,果胶-PDA微球在pH=3.5时吸附效果最好,在25℃、pH=3.5、初始Th~(4+)质量浓度为24mg/L、吸附剂质量为0.03g的条件下,接触时间为1200min时,吸附容量可达到37.172mg/g;共存离子Cs+、Sr~(2+)、Mn~(2+)和Mg~(2+)对Th~(4+)的吸附影响较小,说明该吸附剂对Th~(4+)的吸附选择性较好;热力学和动力学研究结果表明,吸附过程符合线性Langmuir等温吸附模型和准二级动力学模型,最大吸附量为99.010 mg/g;热力学数据表明,果胶-PDA吸附Th~(4+)是一个自发吸热的过程;TG分析可知,果胶-PDA的热稳定性较改性前果胶-Ca有所提高;果胶-PDA上的N、O与溶液中Th~(4+)发生的螯合作用是果胶-PDA微球对Th~(4+)的主要吸附机理。
        Pectin-Ca microspheres were prepared by sol-gel method with Ca~(2+) as cross-linking agent, and then dopamine was used to modify the pectin-Ca microspheres to prepare functional pectin-PDA microspheres as adsorbent. The adsorption performance of this adsorbent for removing Th~(4+) was discussed.SEM, FTIR and XPS techniques were used to analyze the preparation of pectin-PDA microspheres and its adsorption mechanism. The results showed that pectin-PDA microspheres had the best adsorption effect for Th~(4+) at pH=3.5. The adsorption capacity of adsorbent reached 37.172 mg/g under the conditions of 25 ℃,initial mass concentration of Th~(4+) 24 mg/L, adsorbent dosage 0.03 g, and contact time 1200 min.Co-existing ions Cs~+, Sr~(2+), Mn~(2+) and Mg~(2+) had little effect on the adsorption of Th~(4+), indicating that the adsorbent had better adsorption selectivity for Th~(4+). The thermodynamics and kinetics showed that the adsorption was described well by the Langmuir linear isotherm model and the kinetic data conformed to the pseudo-second-order kinetics model. The maximum adsorption capacity was 99.010 mg/g. The thermodynamic data showed that the adsorption of Th~(4+) by pectin-PDA was a spontaneous absorption. TG analysis revealed that the thermal stability of pectin-PDA microspheres was better than that of pectin-Ca microspheres. Coordination of N and O from pectin-PDA microspheres with Th~(4+) in solution was the main adsorption mechanism of pectin-PDA microspheres for Th~(4+).
引文
[1]Adeek S A,El-Sayed M A,Amine M M,et al.A chelating resin containing trihydroxybenzoic acid as the functional group:Synthesis and adsorption behavior for Th(Ⅳ)and U(Ⅵ)ions[J].Journal of Radioanalytical&Nuclear Chemistry,2014,299(3):1299-1306.
    [2]Chen Runyang(陈润羊),Hua Ming(花明).Research on influence of uranium resource on national nuclear power development strategy[J].Mining&Processing Equipment(矿山机械),2015,43(11):7-11.
    [3]KaynarüH,?abiko?lu I,Kaynar S?,et al.Modeling of thorium(Ⅳ)ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology[J].Applied Radiation&Isotopes,2016,115:280-288.
    [4]Sheng G,Hu B.Role of solution chemistry on the trapping of radionuclide Th(Ⅳ)using titanate nanotubes as an efficient adsorbent[J].Journal of Radioanalytical&Nuclear Chemistry,2013,298(1):455-464.
    [5]Raju C S K,Subramanian M S.Sequential separation of lanthanides,thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes[J].Journal of Hazardous Materials,2007,145(1/2):315-322.
    [6]Harrison J J,Zawadzki A,Chisari R,et al.Separation and measurement of thorium,plutonium,americium,uranium and strontium in environmental matrices[J].J Environ Radioact,2011,102(10):896-900.
    [7]Moody C A,Glover S E,Stuit D B,et al.Pre-concentration and separation of thorium,uranium,plutonium and americium in human soft tissues by extraction chromatography[J].Journal of Radioanalytical&Nuclear Chemistry,1998,234(1/2):183-188.
    [8]Pozebon D,Martins C A,Scheffler G L.Straightforward determination of U,Th,and Hf at trace levels using ultrasonic nebulization and axial view ICP OES[J].Analytical Methods,2016,8(3):504-509.
    [9]Khazaei Y,Faghihian H,Kamali M.Removal of thorium from aqueous solutions by sodium clinoptilolite[J].Journal of Radioanalytical&Nuclear Chemistry,2011,289(2):529-536.
    [10]Yakout S M.Evaluation of mineral and organic acids on the selective separation of radioactive elements(U and Th)using modified carbon[J].Desalination&Water Treatment,2016,57(7):3292-3297.
    [11]Zong Y,Zhang Y,Lin X,et al.Preparation of a novel microsphere adsorbent of prussian blue capsulated in carboxymethyl cellulose sodium for Cs(Ⅰ)removal from contaminated water[J].Journal of Radioanalytical&Nuclear Chemistry,2017,311(3):1577-1591.
    [12]Xu Jihong(徐继红),Xu Shaowei(许少薇),Li Huiling(李慧玲),et al.Adsorption performanc of methylene blue dye by LS-g-PAAAMPS/APT resin[J].Fine Chemicals(精细化工),2016,33(5):497-503.
    [13]Wang Xinpeng(王新鹏),Guo Zhouyi(郭周义).Application of dopamine to sewage treatment and its forecast[J].Industrial Water Treatment(工业水处理),2015,35(2):19-22.
    [14]Liu Y L,Ai K L,Lu L H.Polydopamine and its derivative materials:Synthesis and promising applications in energy,environmental,and biomedical fields[J].Chemical Reviews,2014,114(9):5057-5115.
    [15]Kupchik L A,Kupchik M P,Alekseev O L,et al.Effect of electrosurface properties of pectin substances on their sorption capacity for water and heavy metals[J].Russian Journal of Applied Chemistry,2007,80(7):1078-1081.
    [16]Zhu Jiuya(祝久亚).Studies on preparation and application basis of petin/Al2O3-ZrO2 composite microsphere[D].Mianyang:Southwest University of Science and Technology(西南科技大学),2013.
    [17]Malkoc E,Nuhoglu Y.Removal of Ni(II)ions from aqueous solutions using waste of tea factory:Adsorption on a fixed-bed column[J].Journal of Hazardous Materials,2006,135(1):328-336
    [18]Rana D,Matsuura T,Kassim M A,et al.Radioactive decontamination of water by membrane processes-A review[J].Desalination,2013,321(15):77-92.
    [19]Wang J,Lin X,Luo X,et al.A sorbent of carboxymethyl cellulose loaded with zirconium for the removal of fluoride from aqueous solution[J].Chemical Engineering Journal,2014,252(18):415-422.
    [20]Zhou Q,Lin X,Li B,et al.Fluoride adsorption from aqueous solution by aluminum alginate particles prepared via electrostatic spinning device[J].Chemical Engineering Journal,2014,256(8):306-315.
    [21]Zhou L,Jin J,Liu Z,et al.Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles[J].Journal of Hazardous Materials,2011,185(2):1045-1052.
    [22]Feng S,Li X,Ma F,et al.Prussian blue functionalized microcapsules for effective removal of cesium in a water environment[J].RSCAdvances,2016,6(41):34399-34410.
    [23]Yi P T,Khan M A,Choong T S Y.Kinetic and isotherm studies for lead adsorption from aqueous phase on carbon coated monolith[J].Chemical Engineering Journal,2013,217(2):248-255.
    [24]Ho Y S,Mckay G.Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34(5):451-465.
    [25]Tomar V,Prasad S,Kumar D.Adsorptive removal of fluoride from water samples using Zr-Mn composite material[J].Microchemical Journal,2013,111(14):116-124.
    [26]Chong K Y,Chia C H,Zakaria S,et al.Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions[J].Journal of Environmental Chemical Engineering,2014,2(4):2156-2161.
    [27]Freundlich H M F.Over the adsorption in solution[J].Journal of Physical Chemistry,1906,57:385-470.
    [28]Wu L,Lin X,Wu J,et al.Adsorption behavior of carboxymethyl konjac glucomannan microspheres for fluoride from aqueous solution[J].RSC Advances,2016,6(92):89417-89429.
    [29]Deze E G,Papageorgiou S K,Favvas E P,et al.Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions:Effect of porosity in Cu2+and Cd2+ionsorption[J].Chemical Engineering Journal,2012,209(20):537-546.
    [30]Hamane D,Arous O,Kaouah F,et al.Adsorption/photoelectrodialysis combination system for Pb2+removal using bentonite/membrane/semiconductor[J].Journal of Environmental Chemical Engineering,2015,3(1):60-69.
    [31]Xu J,Zhou L,Jia Y,et al.Adsorption of thorium(Ⅳ)ions from aqueous solution by magnetic chitosan resins modified with triethylene-tetramine[J].Journal of Radioanalytical&Nuclear Chemistry,2015,303(1):347-356.
    [32]Dreyer D R,Miller D J,Freeman B D,et al.Elucidating the structure of poly(dopamine)[J].Langmuir the Acs Journal of Surfaces&Colloids,2012,28(15):6428-6435.
    [33]Zong Y,Zhang Y,Lin X,et al.Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes[J].RSC Advances,2017,7(50):31352-31364.
    [34]Gnanasambandam R,Proctor A.Determination of pectin degree of esterification by diffusereflectance Fourier transform infrared spectroscopy[J].Food Chemistry,2000,68(3):327-332.
    [35]Chatjigakis A K,Pappas C,Proxenia N,et al.FTIR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes[J].Carbohydrate Polymers,1998,37(4):395-408.
    [36]Xu Hui(徐慧).Study on extracting technology and physicochemical properties of pectin from Chili[D].Tianjin:Tianjin University of Science and Technology(天津科技大学),2010.
    [37]Chen P P,Zhang H P,Ding J,et al.Carboxylmethyl konjac glucomannan conjugated polydopamine composites for Pb(Ⅱ)removal[J].Carbohydrate Polymers,2017,162:62-70.
    [38]Chang Z,Yu Z,Zeng G,et al.Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd[J].Chemical Engineering Journal,2016,284:247-259.
    [39]Gao H,Sun Y,Zhou J,et al.Mussel-Inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification[J].Acs Applied Materials&Interfaces,2013,5(2):425-432.
    [40]Dreyer D R,Miller D J,Freeman B D,et al.Elucidating the structure of poly(dopamine)[J].Langmuir the Acs Journal of Surfaces&Colloids,2012,28(15):6428-6435.
    [41]Huang Yaoyao(黄瑶瑶),Shi Runping(石润平),Huang Hanfang(黄涵芳),et al.Selective adsorption of thorium in radioactive waste water by pummel pool[J].Applied Chemical Industry(应用化工),2017,46(9):1742-1746.
    [42]Zhang X J,Liu H J,Liu X Y,et al.Synthesis of calixarene derivative and its adsorption properties of thorium ions[J].Journal of Nuclear and Radiochemistry,2013,35(4):241-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700