AMT驱动构型对纯电动客车综合性能影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Drivetrain Topology Configuration with AMT on Comprehensive Performance of Pure Electric Bus
  • 作者:刘晓东 ; 马建 ; 贺伊琳 ; 张一西 ; 张凯
  • 英文作者:LIU Xiao-dong;MA Jian;HE Yi-lin;ZHANG Yi-xi;ZHANG Kai;School of Automobile, Chang'an University;
  • 关键词:汽车工程 ; 驱动构型 ; 纯电动客车 ; 动力性 ; 经济性
  • 英文关键词:automotive engineering;;drivetrain configuration;;pure electric bus;;dynamic performance;;economic performance
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:长安大学汽车学院;
  • 出版日期:2019-07-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.191
  • 基金:国家重点研发计划项目(2017YFC0803904);; 国家自然科学基金项目(51507013);; 陕西省博士后基金项目(2017BSHEDZZ36);; 陕西省重点产业创新链(群)项目(2018ZDCXL-GY-05-03-01);; 陕西省重点研发计划重点项目(2018ZDXM-GY-082);; 陕西省创新人才推进计划-青年科技新星项目(2018KJXX-005);; 中央高校基本科研业务费专项资金项目(310822173201)
  • 语种:中文;
  • 页:ZGGL201907019
  • 页数:10
  • CN:07
  • ISSN:61-1313/U
  • 分类号:176-185
摘要
为研究自动机械式变速器(AMT)驱动构型对纯电动客车综合性能的影响,以12 m电机直驱纯电动城市客车为研究对象,装备3挡AMT并对驱动电机重新选型,利用NSGA-Ⅱ多目标优化算法以0~50 km·h~(-1)加速时间最短和中国典型城市工况(普通道路和快速道路)下行驶能耗最低为目标对变速箱传动比进行优化,并制定基于车速和加速踏板开度的双参数动力性与经济性换挡规律,在中国典型城市工况不同道路下,采用2种换挡规律对整车驱动能耗与制动能量回收进行仿真,并利用最大爬坡度及加速时间对整车动力性能进行分析。研究结果表明:与原电机直驱构型下整车性能相比,AMT驱动构型在将驱动电机峰值转矩降低68.4%后,最大爬坡度从20.07%提高到20.3%,0~50 km·h~(-1)加速时间从14.19 s增加到18.69 s,整车动力性虽满足要求,但加速时间增加了31.7%;其驱动能耗有所降低,但制动能量回收能力有所减弱,且二者都受行驶工况和换挡规律的影响,普通道路行驶时,经济性和动力性换挡规律百公里驱动能耗分别降低了1.55%和0.55%,百公里制动能量回收分别减少了1.35%和1.53%,百公里综合能耗分别降低了-0.12%和1.62%,快速道路行驶时,经济性和动力性换挡规律百公里驱动能耗分别降低4.78%和3.72%,百公里制动能量回收分别减少了1.53%和5.1%,百公里综合能耗分别降低了5.63%和3.35%。可见,纯电动客车采用AMT驱动构型时,需综合考虑车辆设计要求及行驶工况与换挡规律的影响。
        In order to study the influence of drivetrain configuration with an automatic mechanical transmission(AMT) on the comprehensive performance of a pure electric bus, a 12 m direct-drive pure electric city bus was taken, equipped with a three-speed AMT and rematched the drive motor. Based on the NSGA-Ⅱ multi-objective optimization algorithm, the gearbox transmission ratio was optimized for the purpose of minimizing the acceleration time of 0 to 50 km·h~(-1) and the energy consumption of China's typical urban cycles(normal roads and throughways). Then, the two-parameter dynamic and economic gearshift schedules were formulated based on vehicle ve-locity and accelerator pedal opening. Finally, driving energy consumption and braking energy re-covery simulations were conducted with different gear shift schedules in normal roads and throughways for China's typical urban cycles. Meanwhile, the dynamic performance was analyzed through the maximum gradeability and acceleration time. From comparison with the direct-drive pure electric bus, it can be shown that when the bus is equipped with an AMT, the maximum gradeability increases from 20.07% to 20.3%, the peak torque of the drive motor decreases by 68.4%, and the acceleration time of 0 to 50 km·h~(-1) rises from 14.19 s to 18.69 s. Although the dynamic performance of the vehicle can meet the design requirements, the acceleration time in-creased by 31.7%. At the same time, the driving energy consumption decreased but the capacity of the braking energy recovery weakens. Both are affected by the vehicle driving cycles and AMT shift schedules. When driving on normal roads, the driving energy savings can reach 1.55% and 0.55% for 100 kilometers, compared with 4.78% and 3.72% on throughways, using the economic and dynamic gear shift schedule, respectively. However, the braking energy recovery decreased by 1.35% and 1.53% on normal roads and 1.53% and 5.1% on throughways. Thus, the comprehensive energy consumption for 100 kilometers will decrease by-0.12% and 1.62% on normal roads compared with 5.63% and 3.35% on throughways when using the dynamic and economic gear shift schedules, respectively. Therefore, it is necessary to comprehensively consider the influence of vehicle design requirements, driving conditions, and shift schedules when adopting the AMT drivetrain configuration to an electric bus.
引文
[1] FANG S N,SONG J,SONG H J,et al.Design and Control of a Novel Two-speed Uninterrupted Mechanical Transmission for Electric Vehicles [J].Mechanical Systems and Signal Processing,2016,75:473-493.
    [2] XJ J Q,XIONG G M,ZHANG Y.Application of Automatic Manual Transmission Technology in Pure Electric Bus [C] // IEEE.Proceedings of the Vehicle Power and Propulsion Conference.New York:IEEE,2008:1-4.
    [3] HOFMAN T,DAI C H.Energy Efficiency Analysis and Comparison of Transmission Technologies for an Electric Vehicle [C] // IEEE.Proceedings of the Vehicle Power and Propulsion Conference.New York:IEEE,2011:1-6.
    [4] ZENG X H,MING H T,XU X,et al.Parameter Design for Power Train and Performance Simulation of Electrical City Bus [C] // IEEE.Proceedings of the Vehicle Power and Propulsion Conference.New York:IEEE,2008:5-10.
    [5] 秦大同,王禺寒,胡明辉.考虑运行工况的纯电动汽车动力传动系统参数设计[J].重庆大学学报,2014,37(1):7-14.QIN Da-tong,WANG Yu-han,HU Ming-hui.Design of Powertrain Parameters of Pure Electric Vehicles Considering Operating Conditions [J].Journal of Chongqing University,2014,37 (1):7-14.
    [6] 秦大同,周保华,胡明辉,等.两挡电动汽车动力传动系统的参数设计[J].重庆大学学报,2011,34(1):1-6.QIN Da-tong,ZHOU Bao-hua,HU Ming-hui,et al.Parameters Design of Powertrain System of Electric Vehicle with Two-speed Gearbox [J].Journal of Chongqing University,2011,34 (1):1-6.
    [7] 周兵,江清华,杨易.基于行驶工况的纯电动汽车比能耗分析及传动比优化[J].中国机械工程,2011,22(10):1236-1241.ZHOU Bing,JIANG Qing-hua,YANG Yi,et al.Analysis of Specific Energy Consumption and Ratio Optimization of BEV Based on Running Schedule [J].China Mechanical Engineering,2011,22 (10):1236-1241.
    [8] 黄康,罗时帅,王富雷.纯电动汽车动力系统传动比优化设计[J].中国机械工程,2011,22(5):625-629.HUANG Kang,LUO Shi-shuai,WANG Fu-lei.Optimization Design of Electric Vehicle Transmission Gear Ratio [J].China Mechanical Engineering,2011,22 (5):625-629.
    [9] ZHU B,ZHANG N,WALKER P,et al.Gear Shift Schedule Design for Multi-speed Pure Electric Vehicles [J].Journal of Automobile Engineering,2015,229 (1):70-82.
    [10] HU Y,LIU C,XIONG G,et al.Optimization of Gear Shift Schedule for Electric Buses Equipped with 4-AMT Using Dynamic Programming [C] // IEEE.Intelligent Vehicles Symposium.New York:IEEE,2015:431-436.
    [11] 高玮,邹渊,孙逢春.纯电动公交车AMT双参数换挡最优控制[J].汽车工程,2016,38(3):344-349.GAO Wei,ZOU Yuan,SUN Feng-chun.AMT Optimal Control of Dual Parameters Shifting for Pure Electric Bus [J].Automotive Engineering,2016,38 (3):344-349.
    [12] 王小军,蔡源春,周云山.自动变速器匹配对纯电动汽车能耗影响的研究[J].汽车工程,2014,36(7):871-878.WANG Xiao-jun,CAI Yuan-chun,ZHOU Yun-shan.Research on the Influence of Automatic Transmission Matching for the Energy Consumption of Pure Electric Vehicles [J].Automotive Engineering,2014,36 (7):871-878.
    [13] ZHANG L P,LI L,QI B N,et al.Parameters Optimum Matching of Pure Electric Vehicle Dual-mode Coupling Drive system [J].Science China-Technological Sciences,2014,57 (11):2265-2277.
    [14] ENANG W,BANNISTER C,BRACE C,et al.Modelling and Heuristic Control of a Parallel Hybrid Electric Vehicle [J].Journal of Automobile Engineering,2015,229 (11):1494-1513.
    [15] 周兵,江清华,杨易.两挡变速器纯电动汽车动力性经济性双目标的传动比优化[J].汽车工程,2011,33(9):792-797.ZHOU Bing,JIANG Qing-hua,YANG Yi.Transmission Ratio Optimization with Dual Objectives of Power Performance and Economy for a Two-speed Electric Vehicle [J].Automotive Engineering,2011,33 (9):792-797.
    [16] GAO B,LIANG Q,XIANG Y,et al.Gear Ratio Optimization and Shift Control of 2-speed I-AMT in Electric Vehicle [J].Mechanical Systems and Signal Processing,2015,50-51:615-631.
    [17] 余志生.汽车理论[M].5版.北京:机械工业出版社,2009.YU Zhi-sheng.The Theory of Automobile [M].5th ed.Beijing:China Machine Press,2009.
    [18] FAN Qin-man.Multi-objective Optimization Design of Vehicle Transmission System Based on Pareto Optimal Theory [C] // IEEE.Intelligent Computation Technology and Automation.New York:IEEE,2009:198-201.
    [19] LI Y H,LU X M,KAR N C.Rule-based Control Strategy with Novel Parameters Optimization Using NSGA-Ⅱ for Power-split PHEV Operation Cost Minimization [J].IEEE Transactions on Vehicular Technology,2014,63 (7):3051-3061.
    [20] 陈淑江,秦大同,胡明辉.兼顾动力性与经济性的纯电动汽车AMT综合换挡策略[J].中国机械工程,2013,24(19):2687-2692.CHEN Shu-jiang,QIN Da-tong,HU Ming-hui.Pure Electric Vehicle AMT Comprehensive Shift Strategy Considering Dynamics and Economic Performances [J].China Mechanical Engineering,2013,24 (19):2687-2692.
    [21] WALKER P D,RAHMAN S A,ZHU B,et al.Modelling,Simulations,and Optimisation of Electric Vehicles for Analysis of Transmission Ratio Selection [J].Advances in Mechanical Engineering,2013,5:1-7.
    [22] 解少博,刘玺斌,王佳,等.增程式电动环卫车动力系统匹配与仿真[J].公路交通科技,2014,31(9):145-153.XIE Shao-bo,LIU Xi-bin,WANG Jia,et al.Powertrain Matching and Simulation of Extended Range Electric Sanitary Vehicle [J].Journal of Highway and Transportation Research and Development,2014,31 (9):145-153.
    [23] 许世维,马建,汪贵平,等.基于制动意图识别的增程式重型商用车复合制动控制策略[J].中国公路学报,2017,30(4):140-151.XU Shi-wei,MA Jian,WANG Gui-ping,et al.Composite Braking Control Strategy Based on Braking Intention Recognition for Range-extended Heavy Commercial Vehicles [J].China Journal of Highway and Transport,2017,30 (4):140-151.
    [24] ITANI K,DE BERNARDINIS A,KHATIR Z,et al.Comparison Between Two Braking Control Methods Integrating Energy Recovery for a Two-wheel Front Driven Electric Vehicle [J].Energ Convers Manage,2016,122:330-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700