发射药混同过程静电性能测试及风险评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrostatic Performance Test and Risk Assessment of Propellant Mixing Process
  • 作者:卫水爱 ; 孙磊 ; 李文海 ; 李春光 ; 白春华
  • 英文作者:WEI Shui-ai;SUN Lei;LI Wen-hai;LI Chun-guang;BAI Chun-hua;State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology;Safety Technology Research Institute of Ordance Industry;
  • 关键词:发射药 ; 混同 ; 静电场 ; 风险评估 ; 仿真
  • 英文关键词:propellant;;mixing;;electric field;;risk assessment;;simulation
  • 中文刊名:HNCL
  • 英文刊名:Chinese Journal of Energetic Materials
  • 机构:北京理工大学爆炸科学与技术国家重点实验室;兵器工业安全技术研究所;
  • 出版日期:2019-01-23 16:56
  • 出版单位:含能材料
  • 年:2019
  • 期:v.27;No.164
  • 基金:国防科工局基础产品创新计划火炸药科研专项项目(科工三司〔2017〕1315)
  • 语种:中文;
  • 页:HNCL201906014
  • 页数:8
  • CN:06
  • ISSN:51-1489/TK
  • 分类号:61-68
摘要
为评估发射药混同过程中的静电灾害风险,预防事故发生,自主设计了电阻率、介电常数、电荷积累量等静电参数测试装置,并以11/7单基发射药为典型产品进行测试实验,得到其体积电阻率为1.87×10~(10)Ω·m,表面电阻率为1.06×10~(12)Ω,介电常数为1.88,滑槽摩擦状态饱和荷质比为-1.85μC·kg~(-1);采用ANSOFT MAXWELL软件对11/7发射药混同料筒内的静电场进行仿真计算,得到了直径1000 mm混同料筒内11/7发射药最大静电场强随药面高度的变化曲线,结果表明随着药面高度的增加,料筒内电场强度不断增大,当药面高度达到40 mm时,料筒内电场强度已达到空气击穿场强,存在静电放电风险;对不同直径混同料筒的临界放电药面高度进行模拟计算,得到了临界放电药面高度随料筒直径的变化曲线,结果表明直径100,200,300,400,500 mm的料筒,临界放电药面高度分别为81,46,42,41,40 mm,直径超过500 mm时,临界放电药面高度基本维持在40 mm。
        To prevent accidents and assess the risk of static disasters in propellant mixing process,we designed devices to test electrostatic parameters such as resistivity,dielectric constant and charge accumulation. 11/7 single-base propellant was chosen to be tested as a typical product. It shows that the volume resistivity,surface resistivity and dielectric constant of 11/7 single-base propellant are 1.87×10~(10)Ω·m,1.06×10~(12)Ω,and 1.88,respectively,and the saturated charge-to-mass ratio at friction state of chute is -1.85 μC·kg~(-1). ANSOFT MAXWELL software was used to simulate the electrostatic field in mixing silo of 11/7 propel-lant,obtaining the change curve of the maximum field strength with powder's height in 1000 mm diameter mixing silo. Results show that the electric field strength increases with the increase of powder's height. When the powder's height is 40 mm,the air breakdown field strength is reached and there is a risk of electrostatic discharge. In addition,the critical discharge powder's heights at different diameters of mixing silos were simulated,and the corresponding change curve was also obtained. It shows that the critical discharge powder's heights are 81,46,42,41 mm and 40 mm when the diameters of material silo are 100,200,300,400 mm and 500 mm,respectively. However,when the diameter is greater than 500 mm,the critical discharge pow-der's height reasonably maintains at 40 mm.
引文
[1]胡凌艳,张双保,潘杰等.小粒发射药混同工序的安全性[J].四川兵工学报,2009,10(30):35-36.HU Ling-yan,ZHANG Shuang-bao,PAN Jie,et al. Safety of small particle propellant mixing process[J].Journal of Sichuan Armed Forces,2009,10(30):35-36.
    [2]张国顺,王泽溥.火炸药及其制品燃烧爆炸事故及其预防措施(上册)[M].北京:兵器工业出版社,2009:123-127.ZHANG Guo-shun,WANG Ze-pu. Combustion and explosion accidents of explosives and their products and their preventive measures(Volume 1)[M]. Beijing:Weapon Industry Press,2009:123-127.
    [3]谭敏,邓维平,张永明.粒状发射药自动化混同工艺混合均匀度[J].四川兵工学报,2009,30(3):81-83.TAN Min,DENG Wei-ping,ZHANG Yong-ming. Granular pro-pellant automated mixing process mixing uniformity[J].Journal of Sichuan Armed Forces,2009,30(3):81-83.
    [4]孙可平.粉体静电学国内外研究动态与进展[J].物理,2000,29(6):364-368.SUN Ke-ping. Researcrh developments and progress on pow-der electrostatics[J]. Physics,2000,29(6):364-368.
    [5] Glor M,Maurer B. Ignition tests with discharges from bulked polymeric granules in silos(cone discharge)[J]. Journal of Electrostatics,1999,30(5):123-133.
    [6] Kuttler A,Glor M. Modelling of the electric field in silos filled with polymeric granules[J]. Journal of Electrostatics,1993,30:285-296.
    [7] Sun K P,Yu G F. Research on field calculation&safety evalua-tion in powder silo[J]. Journal of Electrostatics,1998,44(1-2):119-123.
    [8] Sun K P,Liu Q Z,Li X W. Simulation test on charge density and surface potential in an oil tank duringfilling operation[J].Journal of Electrostatics,2009,67(2-3):340-341.
    [9]刘存礼,王书平,杨洁,等.静电计量与测试[M].北京:国防工业出版社,2016:63-64.LIU Cun-li,WANG Shu-ping,YANG Jie,et al. Electrostatic Me-trology and measurement[M]. Beijing:National Defense Indus-try Press,2016:63-64.
    [10]孙绪兵.部分聚合物结构与介电常数关系研究[J].计算机与应用化学,2015,32(6):26-29.SUN Xu-bing. Study on the relationship between partial poly-mer structure and dielectric constant[J]. Computers and Ap-plied Chemistry,2015,32(6):26-29.
    [11]罗宏昌,毕载俊,伍学正.静电实用技术手册[M].上海:上海科学普及出版社,1990:284.LUO Hong-chang,BI Zai-jun,WU Xue-zheng. Electrostatic technical manual[M]. Shanghai:Shanghai Science Popular-ization Press,1990:284.
    [12]李志敏.起爆药静电响应规律与安全设计[D].北京:北京理工大学,2014.LI Zhi-min. The response law and safety designs of primary ex-plosives to static electricity[D]. Beijing:Beijing Institute of Technology,2014.
    [13]吴宗汉.基础静电学[M].北京:北京大学出版社,2010:172.WU Zong-han. Basic electrostatics[M]. Beijing:Peking Uni-versity Press,2010:172.
    [14]卫水爱,白春华,李春光.发射药生产过程中静电锥体放电规律数值模拟研究[J].兵工学报,2017,38(5):892-899.WEI Shui-ai,BAIC hun-hua,LI Chun-guang. Simulation of elec-trostatic cone discharge in propellant production process[J].Acta Armamentarii,2017,38(5):892-899.
    [15]罗春荣,陆建隆.电动力学(第3版)[M].西安:西安交通大学出版社,2000:5.LUO Chun-rong,LU Jian-long. Electrodynamics(the 3 edition)[M]. Xi'an:Xi'an Jiaotong University Press,2000:5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700