碾压混凝土的动态力学特性分析及损伤演化本构模型建立
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic mechanical property analysis of roller-compacted concrete and damage constitutive model establishment
  • 作者:张社荣 ; 宋冉 ; 王超 ; 魏培勇
  • 英文作者:ZHANG Sherong;SONG Ran;WANG Chao;WEI Peiyong;State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University;School of Civil Engineering, Tianjin University;
  • 关键词:碾压混凝土 ; 分离式霍普金森压杆实验 ; 动态力学特性 ; 统计损伤演化模型
  • 英文关键词:roller-compacted concrete;;split Hopkinson pressure bar experiment;;dynamic mechanical properties;;statistical damage evolution model
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:天津大学水利工程仿真与安全国家重点实验室;天津大学建筑工程学院;
  • 出版日期:2019-01-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.293
  • 基金:国家自然科学基金资助项目(51779168,51509182)~~
  • 语种:中文;
  • 页:ZNGD201901017
  • 页数:9
  • CN:01
  • ISSN:43-1426/N
  • 分类号:136-144
摘要
为了深入认识碾压混凝土的动态力学特性,参考实际水工混凝土大坝工程制备试样,借助改进的分离式霍普金森压杆(SHPB)装置测定碾压混凝土的动态性能,得到不同级配碾压混凝土试样在动态冲击荷载下(应变率为25~80s-1)的应力-应变曲线,分析其强度和变形特性、破坏形态和吸能特性,并建立基于Weibull分布的损伤演化本构模型。研究结果表明:碾压混凝土强度较低,加载过程中应力发展不充分,其应力-应变曲线呈现1个明显的平台阶段;碾压混凝土的峰值应力、峰值应变、单位体积吸能率均随加载应变率的提高而增大,并满足二次多项式关系;建立的统计损伤演化模型可以有效地描述碾压混凝土在动态冲击荷载下的力学行为,理论结果与实验结果吻合较好。
        In order to explore the dynamic mechanical properties of roller-compacted concrete(RCC) comprehensively,actual hydraulic concrete dam project was referred to prepare specimen, and the dynamic mechanical properties of RCC were measured via improved split Hopkinson pressure bar(SHPB) technique. The stress-strain curves of two kinds of coarse grade specimens under dynamic loading(strain rate ranges from 20 s-1 to 80 s-1) were obtained. Then the strength and deformation characteristics, failure mode and energy absorption property were analyzed and a statistical damage constitutive model based on Weibull distribution was established. The results show that since RCC has low strength and the stress develops inadequately during experiment, the stress-strain curve shows an obvious plateau stage; the relationships between the peak stress, the peak strain, the energy absorption property and the loading strain rate are in accordance with two-polynomial relation, and all of them increase with the increment of the strain rate; the statistical damage constitutive model can well describe the mechanical behavior under dynamic impact loading. Theoretical results are in good agreement with experimental data.
引文
[1]席浩.碾压混凝土研究与工程实践[M].北京:中国水利水电出版社,2015:8-15.XI Hao.Research and engineering practice of roller-compacted concrete[M].Beijing:China Water&Power Press,2015:8-15.
    [2]陆遐龄.三峡工程防护问题研究的回顾[J].中国三峡建设,1995(2):23-24.LU Xialing.Review on the protection of Three Gorges Project[J].China Three Gorges Construction,1995(2):23-24.
    [3]GEORGIN J F,REYNOUARD J M.Modeling of structures subjected to impact:concrete behavior under high strain rate[J].Cement and Concrete Composites,2003,25(1):131-143.
    [4]NGO T,MENDIS P,GUPTA A,et al.Blast loading and blast effects on structures-an overview[J].Electronic Journal of Structural Engineering,2007,7(S1):76-91.
    [5]United States Army Corps of Engineers.Structures to resist the effects of accidental explosions[M].Washington DC:USGovernment Printing Office,1969:45-47.
    [6]中国电力出版社.水工建筑物抗震设计规范[M].北京:中国电力出版社,2001:16-17.China Electric Power Press.Code for seismic design of hydraulic structures[M].Beijing:China Electric Power Press,2001:16-17.
    [7]BISCHOFF P H,PERRY S H.Compressive behavior of concrete at high strain rates[J].Materials and structures,1991,24(6):425-450.
    [8]PETERS J,ANDERSON W F,WASTON A J.Use of large diameter Hopkinson bar to investigate the stress pulse generated during high velocity projectile penetration into construction materials[C]//Proceedings of the 6th International Symposium on Interaction of Nonnuclear Munitions with Structures.Florida,USA,1993:188-193.
    [9]王怀亮,闻伟.碾压混凝土单轴动态力学性能研究[J].水力发电学报,2011,30(4):155-167.WANG Huailiang,WEN Wei.Dynamic mechanical properties of RCC under uniaxial stress[J].Journal of Hydroelectric Engineering,2011,30(4):155-167.
    [10]张志刚,孔大庆,宫光明,等.高应变率下混凝土动态力学性能SHPB实验[J].解放军理工大学学报(自然科学版),2007,8(6):611-618.ZHANG Zhigang,KONG Daqing,GONG Guangming,et al.Dynamic mechanical behavior of concrete under high strain rate using SHPB[J].Journal o f PLA University of Science and Technology,2007,8(6):611-618.
    [11]王政,倪玉山,曹菊珍,等.冲击载荷下混凝土动态力学性能研究进展[J].爆炸与冲击,2005,25(6):519-527.WANG Zheng,NI Yushan,CAO Juzhen,et al.Recent advances of dynamic mechanical behavior of concrete under impact loading[J].Explosion and Shock Waves,2005,25(6):519-527.
    [12]MALVAR L J,ROSS C A.Review of strain rate effects for concrete in tension[J].Materials Journal,1998,95(6):735-739.
    [13]GROTE D L,PARK S W,ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:I.experimental characterization[J].International Journal of Impact Engineering,2001,25(9):869-886.
    [14]HAO H,ZHOU X Q.Concrete material model for high rate dynamic analysis[C]//Proceedings of the 7th International Conference on Shock and Impact Loads on Structures.Perth,Australia,2007:753-768.
    [15]余志武,吴玲玉,单智.混凝土确定性及随机性损伤本构模型研究进展[J].工程力学,2017,34(9):1-12.YU Zhiwu,WU Lingyu,SHAN Zhi.Models for deterministic and stochastic damage constitutions of concrete:a short review[J].Engineering Mechanics,2017,34(9):1-12.
    [16]CUI Jian,HAO Hong,SHI Yanchao.Discussion on the suitability of concrete constitutive models for high-rate response predictions of RC structures[J].International Journal of Impact Engineering,2017,106:202-216.
    [17]彭向和,杨春和.复杂加载史下混凝土的损伤及其描述[J].岩石力学与工程学报,2000,19(2):157-164.PENG Xianghe,YANG Chunhe.The damage and its description of concrete under complex loading history[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(2):157-164.
    [18]邹笃建,刘铁军,滕军,等.混凝土柱单轴动态抗压特性的应变率效应研究[J].振动与冲击,2012,31(2):145-150.ZOU Dujian,LIU Tiejun,TENG Jun,et la.Strain rate effect on uniaxial compressive behavior of concrete columns[J].Journal of Vibration and Shock,2012,31(2):145-150.
    [19]TSU T C,MUGELE R A,MCCLINTOCK F A.A statistical distribution function of wide applicability[J].Journal of Applied Mechanics-Transactions of the Asme,1952,19(2):233-234.
    [20]宋力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005,25(4):368-373.SONG Li,HU Shisheng.Two-wave and three-wave method in SHPB data processing[J].Explosion and Shock Waves,2005,25(4):368-373.
    [21]卢玉斌,武海军,李庆明,等.脆性材料SHPB实验中脉冲整形技术实现近似恒应变率加载功能的进一步研究[J].爆炸与冲击,2013(s1):47-53.LU Yu-bin,WU Hai-jun,Li Qing-ming,et al.Further investigation on nearly constant strain-rate loading in SHPB tests for brittle materials using a pulse-shaping technique[J].Explosion and Shock Waves,2013(s1):47-53.
    [22]李为民,许金余,沈刘军,等.Φ100 mm SHPB应力均匀及恒应变率加载试验技术研究[J].振动与冲击,2008,27(2):129-132.LI Weimin,XU Jinyu,SHEN Liujun,et al.Study on100-mm-diameter SHPB techniques of dynamic stress equilibrium and nearly constant strain rate loading[J].Journal of Vibration and Shock,2008,27(2):129-132.
    [23]MAZARS J,PIJAUDIER-CABOT G.Continuum damage theory-application to concrete[J].Journal of Engineering Mechanics,1989,115(2):345-365.
    [24]李晓雨.三参数Weibull分布参数估计方法研究[D].北京:北京交通大学理学院,2012:3-12.LI Xiaoyu.Research on estimation for the three-parameter Weibull distribution[D].Beijing:Beijing Jiaotong University.School of Science,2012:3-12.
    [25]WANG Z L,LIU Y S,SHEN R F.Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J].Construction and Building Materials,2008,22(5):811-819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700