316LN混晶组织微区塑性变形全场晶体塑性模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on full-field crystal plasticity simulation of grain-level plastic deformation for 316LN steel with mixed-grain structure
  • 作者:李子洋 ; 章海明 ; 刘娟 ; 崔振山
  • 英文作者:LI Zi-yang;ZHANG Hai-ming;LIU Juan;CUI Zhen-shan;Institute of Forming Technology & Equipment,Shanghai Jiao Tong University;
  • 关键词:混晶组织 ; 全场晶体塑性模拟 ; 316LN不锈钢 ; 不均匀塑性变形
  • 英文关键词:mixed-grain structure;;full-field crystal plasticity simulation;;316LN stainless steel;;inhomogeneous plastic deformation
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:上海交通大学塑性成形技术与装备研究院;
  • 出版日期:2018-12-28
  • 出版单位:塑性工程学报
  • 年:2018
  • 期:v.25
  • 基金:国家自然科学基金资助项目(51675335; 51705317);; 上海市青年科技英才扬帆计划资助项目(17YF1408900);; 中央高校基本科研业务费资助项目(16X100040025)
  • 语种:中文;
  • 页:SXGC201806032
  • 页数:8
  • CN:06
  • ISSN:11-3449/TG
  • 分类号:214-221
摘要
采用全场晶体塑性模拟研究了不同取向粗晶对316LN不锈钢混晶组织微区不均匀塑性变形的影响。通过MonteCarlo法模拟生成4种不同取向粗大晶粒的混晶组织代表体元模型,并对其施加单向拉伸的周期边界条件。定量分析了混晶组织在拉伸变形过程中的应力和应变分布的宏微观特征。研究结果表明,所有的混晶组织在晶粒层面上均显示出明显的塑性变形不均匀性,并且粗晶内部的应力和应变均低于其周围细晶组织,硬取向粗晶周围的细晶组织承受更大塑性应变,且具有更高的应力,而软取向粗晶周围的细晶组织则承受相对较小的塑性变形,具有更低的应力。
        Full-field crystal plasticity( CP) simulation was employed to investigate the effect of different orientated large grains on the grain-level heterogeneities plastic deformation of 316 LN stainless steel with mixed-grain structures. Four representative volumes elements( RVEs) of mixed-grain structures with different orientated large grains were generated by Monte-Carlo method,and periodic boundary conditions of uniaxial-tension were enforced on these RVEs. Macroscopical and microcosmic features of distribution of stress and strain for mixed-grain structure during tension process were quantitative analyzed. The results show that all the studied mixed-grain structures show evident grain-level inhomogeneous plastic deformation,and the large grains have smaller stress and strain levels in comparison with their ambient small grains. Concretely,small grains in the vicinity of large grains with hard orientation show both high stress and strain levels,in contrast,small grains in the vicinity of large grains with soft orientation show both lower stress and strain levels.
引文
[1]ZELIN M G,YANG H S,VALIEV R Z,et al.Interaction of hightemperature deformation mechanisms in a magnesium alloy with mixed fine and coarse grains[J].Metallurgical Transaction A,1992,23(11):3135-3140.
    [2]WANG Y,ZHOU J,SHEN T D,et al.Coupled effects of grain size and orientation on properties of nanocrystalline materials[J].Computational Materials Science,2012,58:175-182.
    [3]顾伟,李静媛,王一德.晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能影响[J].金属学报,2016,52(1):51-59.GU Wei,LI Jingyuan,WANG Yide.Effect of grain size and Taylor factor on the transverse mechanical properties of 7050 aluminium alloy extrusion profile after over-aging[J].Acta Metallurgica Sinica,2016,52(1):51-59.
    [4]JIN Z Y,CUI Z S.Modelling the effect of initial grain size on dynamic recrystallization using a modified cellular automata and a adaptive response surface method[J].Journal of Materials Science&Technology,2010,26(12):1063-1070.
    [5]ROTERS F,EISENLOHR P,HANTCHERLI L,et al.Overview of constitutive laws,kinematics,homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory,experiments,applications[J].Acta Materialia,2010,58(4):1152-1211.
    [6]ZHANG H M,DIEHL M,ROTERS F,et al.A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations[J].International Journal of Plasticity,2016,80:111-138.
    [7]ZHANG H M,LIU J,SUI D S,et al.Study of microstructural grain and geometric size effects on plastic heterogeneities at grainlevel by using crystal plasticity modeling with high-fidelity representative microstructures[J].International Journal of Plasticity,2018,100:69-89.
    [8]陈守东,刘相华,刘立忠,等.Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟[J].金属学报,2016,52(1):120-128.CHEN Shoudong,LIU Xianghua,LIU Lizhong,et al.Crystal plasticity finite element simulation of slip and deformation in ultrathin copper strip rolling[J].Acta Metallurgica Sinica,2016,52(1):120-128.
    [9]LI H W,FENG L,YANG H.Deformation mechanism of cold ring rolling in view of texture evolution predicted by a newly proposed polycrystal plasticity model[J].Transactions of Nonferrous Metals Society of China,2013,23(12):3729-3738.
    [10]CHOI Y S,PARTHSARATHY T A.A crystal-plasticity finite element method study on effect of abnormally large grain on mesoscopic plasticity of polycrystal[J].Scripta Materialia,2012,66(1):56-59.
    [11]NEZAKAT M,AKHIANI H,HOSEINI M,et al.Effect of thermomechanical processing on texture evolution in austenitic stainless steel 316L[J].Materials Characterization,2014,98:10-17.
    [12]RAABE D.Computational materials science:The simulation of materials microstructures and properties[M].New Jersey:Wiley-VCH Verlag,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700