变渣皮厚度条件下铜冷却壁变形
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deformation of copper cooling stave under conditions of variable slag coating thickness
  • 作者:李峰光 ; 张建良
  • 英文作者:LI Feng-guang;ZHANG Jian-liang;School of Materials Science and Engineering, Hubei University of Automotive Technology;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:铜冷却壁 ; 渣皮 ; 热-力耦合 ; 热变形 ; ANSYS
  • 英文关键词:copper cooling stave;;slag coating;;thermal-mechanical coupling;;thermal deformation;;ANSYS
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:湖北汽车工业学院材料科学与工程学院;北京科技大学冶金与生态工程学院;
  • 出版日期:2018-06-15
  • 出版单位:中国有色金属学报
  • 年:2018
  • 期:v.28;No.231
  • 基金:国家自然科学基金资助项目(51604103);; 湖北省自然科学基金资助项目(2016CFB293);; 湖北汽车工业学院博士科研启动基金资助项目(BK201607)~~
  • 语种:中文;
  • 页:ZYXZ201806023
  • 页数:8
  • CN:06
  • ISSN:43-1238/TG
  • 分类号:192-199
摘要
根据热弹性力学理论,建立渣皮厚度可变的铜冷却壁热-力耦合应力场分布计算模型,从铜冷却壁在不同渣皮厚度条件下的变形情况这一角度分析煤气温度、冷却制度、镶砖材质和炉渣性质等多种因素对铜冷却壁寿命的影响规律。计算结果表明:冷却壁本体变形随煤气温度的升高而线性增加;随着渣皮厚度的增大,冷却壁本体的变形量先减小后增大,渣皮厚度约为20 mm时冷却壁本体变形最小;冷却水流速的增大对降低冷却壁变形量有显著作用,而冷却水温度的升高会使冷却壁本体的变形量显著增大;提升镶砖热导率可明显减小冷却壁本体变形,而增大镶砖热膨胀系数会明显增加壁体变形量;炉渣热膨胀系数越小,铜冷却壁本体变形越小。
        A thermal-mechanical coupling model of copper cooling stave with variable slag coating was founded based on the thermal elastic mechanics, and the influences of the gas temperature, the cooling system, the materials of insert bricks, and the properties of the slag on the stave life were analyzed from the view point of the deformation of stave body. The results show that the deformation of stave body increases linearly with the increase of gas temperature; the deformation of stave body decreases at first and then increases when the slag coating thickness increases, and the deformation of the stave body has the minimum when the slag coating thickness is 20 mm; the increase of water velocity has a significant influence on reducing deformation of stave body, while increase of cooling water temperature incurs conspicuous growth of deformation; the increase of the heat conductivity of cast-in bricks and the decrease of the thermal expansion coefficient of slag significantly reduce the deformation of stave body while the increase of the thermal expansion coefficient of cast-in bricks obviously enlarges the deformation of stave body.
引文
[1]GANGULY A,REDDY A S,KUMAR A.Process visualization and diagnostic models using real time data of blast furnaces at Tata steel[J].ISIJ International,2010,50(7):1010-1015.
    [2]YEH C P,HO C K,YANG R J.Conjugate heat transfer analysis of copper staves and sensor bars in a blast furnace for various refractory lining thickness[J].International Communications in Heat and Mass Transfer,2012,39(1):58-65.
    [3]朱仁良,居勤章.铜冷却壁高炉操作现象及思考[J].炼铁,2012,31(3):10-15.ZHU Ren-liang,JU Qin-zhang.Operation conditions of copper cooling stave for blast furnace and suggestion[J].Ironmaking,2012,31(3):10-15.
    [4]王宝海,张洪宇,车玉满.鞍钢铜冷却壁高炉的热负荷管理[J].炼铁,2008,27(2):37-39.WANG Bao-hai,ZHANG Hong-yu,CHE Yu-man.Heat load management of copper cooling stave for BF in Anshan Iron and Steel Co.LTD[J].Ironmaking,2008,27(2):37-39.
    [5]ZHANG He-shun,MA Hong-bin,CHEN Jun,ZHOU Ji-lie.The practice of copper cooling stave application for Shougang No.2 BF[C]//Proceedings of the 5th International Congress on the Science and Technology of Ironmaking.Shanghai,2009:883-887.
    [6]左海滨,洪军,张建良,李峰光,沈猛,铁金艳.不同工况下各种材质高炉冷却壁温度场数值模拟[J].武汉科技大学学报,2014,37(2):102-105.ZUO Hai-bin,HONG Jun,ZHANG Jian-liang,LI Feng-guang,SHEN Meng,TIE Jin-yan.Numerical simulation of temperature field of BF cooling staves of different materials under different conditions[J].Journal of Wuhan University of Science and Technology,2014,37(2):102-105.
    [7]ZUO Hai-bin,ZHANG Jian-liang,LI Feng-guang.Damage reason analysis of copper cooing stave[C]//The American Ceramic Society.Materials Science and Technology Conference and Exhibition 2013.Montreal:Research Gate,2013:574-581.
    [8]李峰光,张建良.基于ANSYS“生死单元”技术的铜冷却壁挂渣能力计算模型[J].工程科学学报,2016,38(4):546-554.LI Feng-guang,ZHANG Jian-liang.Calculation model of the adherent dross capacity of copper staves based on ANSYS birth-death element technology[J].Chinese Journal of Engineering,2016,38(4):546-554.
    [9]计秀兰,刘增勋,吕庆,张振峰.冶炼钒钛磁铁矿高炉的铜冷却壁挂渣分析[J].钢铁钒钛,2012,33(1):55-59.JI Xiu-lan,LIU Zeng-xun,LüQing,ZHANG Zhen-feng.Analysis on slag skull on BF copper cooling stave for vanadium-bearing titaniferous magnetite smelting[J].Iron and Steel Vanadium Titanium,2012,33(1):55-59.
    [10]石琳,李志玲.埋纯铜管铸铜冷却壁热态试验和热应力热变形研究[J].内蒙古科技大学学报,2009,40(6):699-707.SHI Lin,LI Zhi-ling.A study on hot test and thermal stress and distortion of cast copper staves with buried copper pipes[J].Journal of Inner Mongolia University of Science and Technology,2009,40(6):699-707.
    [11]刘奇,程树森,牛建平,刘东东.铜钢复合冷却壁传热及热应力分析[J].中国有色金属学报,2015,25(2):523-533.LIU Qi,CHEN Shu-seng,NIU Jian-ping,LIU Dong-dong.Heat transfer and thermal stress analysis of copper steel composite stave[J].The Chinese Journal of Nonferrous Metals,2015,25(2):523-533.
    [12]郭光胜,张建良,刘彦祥,蒋友源,周云花,但家云.湘钢1号高炉铜冷却壁破损机理研究[J].炼铁,2016,36(3):19-23.GUO Guang-sheng,ZHANG Jian-liang,LIU Yan-xiang,JIANG You-yuan,ZHOU Yun-hua,DAN Jia-yun.Study on copper cooling stave damage mechanism of Xiangtan Steel’s No.1 BF[J].Ironmaking,2016,36(3):19-23.
    [13]王宝海.鞍钢高炉铜冷却壁破损原因调查分析[C]//2014年全国炼铁生产技术会暨炼铁学术年会.郑州,2014:825-830.WANG Bao-hai.Investigation on broken copper cooling staves at the No.3 BF of An-Steel[C]//2014 Annual National Ironmaking Technology and Academic Conference.Zhenzhou,2014:825-830.
    [14]卢正东,陈令坤,邹祖桥,左红星,张正东.武钢6号高炉中修破损调查[J].武钢技术,2016,54(4):16-20.LU Zheng-dong,CHEN Ling-kun,ZOU Zu-qiao,ZUO Hong-xing,ZHANG Zheng-dong.Intermediate repair investigation on damage of No.6 blast furnace in WISCO[J].WISCO Technology,2016,54(4):16-20.
    [15]陈明祥.弹塑性力学[M].1版.北京:科学出版社,2007:105-108.CHEN Ming-xiang.Elasticity and Plasticity[M].1st ed.Beijing:Science Press,2007:105-108.
    [16]石琳,程素森,张利君.高炉铜冷却壁的热变形[J].中国有色金属学报,2005,15(12):2040-2046.SHI Lin,CHEN Su-seng,ZHANG Li-jun.Thermal distortion of blast furnace copper staves[J].The Chinese Journal of Nonferrous Metals,2005,15(12):2040-2046.
    [17]刘增勋.高炉冷却壁热力耦合分析[D].沈阳:东北大学,2009:27-33.LIU Zeng-xun.Coupled thermo-mechanical analysis about blast furnace staves[D].Shenyang:Northeastern University,2009:27-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700