高温熔盐流量标定平台物理和控制方案的优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and optimization for high temperature molten salts flow meter calibration platform
  • 作者:黄楠顺 ; 韩利峰 ; 张福春 ; 陈永忠 ; 梁子薇 ; 刘桂民
  • 英文作者:HUANG Nanshun;HAN Lifeng;ZHANG Fuchun;CHEN Yongzhong;LIANG Ziwei;LIU Guimin;School of Nuclear Science and Technology, University of South China;Shanghai Institute of Applied Physics, Chinese Academy of Sciences,Jiading Campus;
  • 关键词:超声波流量计 ; 流量标定平台 ; MATLAB物理仿真 ; 熔盐回路
  • 英文关键词:Ultrasonic flowmeter;;Flow calibration platform;;MATLAB physical simulation;;Molten salt loop
  • 中文刊名:HJSU
  • 英文刊名:Nuclear Techniques
  • 机构:南华大学核科学技术学院;中国科学院上海应用物理研究所嘉定园区;
  • 出版日期:2017-03-10
  • 出版单位:核技术
  • 年:2017
  • 期:v.40
  • 基金:中国科学院战略先导科技专项(No.XDA02010300)资助~~
  • 语种:中文;
  • 页:HJSU201703012
  • 页数:8
  • CN:03
  • ISSN:31-1342/TL
  • 分类号:77-84
摘要
高温熔盐流量计在高温熔盐反应堆、太阳能发电、高温制氢等熔盐集热储能装置中具有良好的应用前景。而目前市场上流量计受材料特性的影响,最高只能在535?C以下使用,并不能满足这些应用场合的高温运行环境要求。研究表明通过改进超声波流量计波导片增加其耐温性能,可满足大于650?C的高温测量要求,然而目前并没有标准的流量计或标定装置能对其进行标定。钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)项目迫切需要建立一个熔盐流量标定平台,提供熔盐的标准流量标定,它的基本参数需满足目标流速1-5 m·s-1、工作温度小于800?C、管径约50 mm、标定误差小于5%、熔盐用量小于200 L等。构建了基于气压控制熔盐流速的物理模型,推导出系统流速的具体表达式,分析控制管道熔盐压差的比例、积分和微分(Proportion-Integration-Differentiation,PID)算法对流速稳定性的影响。通过MATLAB软件仿真,确定了可行性的控制方案参数,并为仪控元件的选型提供了依据。
        Background: High temperature flow meter has been widely applied in the molten salt reactor, solar power generation, high temperature hydrogen production, etc. With the limitation of the material characteristics, the flow meter can only be used in a temperature below 535 ?C. To be applied in high temperature more than 650 ?C environment, the ultrasonic waveguide plate had been modified to raise the temperature resistance. However, there is no standard flow meter or calibration equipment for flow calibration. Purpose: This study aims to design a stable and controllable molten salt flow platform for flow calibration with temperature less than 800 ?C, pipe diameter about 50 mm, measuring range 1-5 m·s-1, and calibration error less than 5%. Methods: Argon gas was used to control the velocity of the molten salt in the pipe connecting two tanks. The proportion-integration-differentiation(PID) closed-loop control system was employed to control the gas mass flow rate to achieve stable differential pressure and get more than 40-s calibration time. MATLAB simulation was conducted to get the optimization parameters and determine the control scheme of the calibration platform. Some factors affecting the stability of the flow rate are analyzed. Results: The optimized scheme, by setting an initial liquid level difference, has been proven to be capable of reducing the total consumption of molten salt((27) 0.1 m3) and driving gas, and reducing the requirements of the mass flow meter. After calculation, it can get 40-s stable molten salt flow, reached velocity of 4 m·s-1, and with a theoretical calibration error about 1.2%. Conclusions: The physical model of a high temperature molten salt flow meter calibration platform based on gas pressure control deduces a specific expression of the system flow rate. Optimized parameters provide reference for flow meter components selection.
引文
1 Abram T,Ion S.Generation-IV nuclear power:a review of the state of the science[J].Energy Policy,2008,36(12):4323?4330.DOI:10.1016/j.enpol.2008.09.059.
    2江绵恒,徐洪杰,戴志敏.未来先进核裂变能--TMSR核能系统[J].中国科学院院刊,2012,27(3):366?374.DOI:10.3969/j.issn.1000-3045.2012.03.016.JIANG Mianheng,XU Hongjie,DAI Zhimin.The future of advanced nuclear fission energy-TMSR China nuclear power system[J].Bulletin of Chinese Academy of Sciences,2012,27(3):366?374.DOI:10.3969/j.issn.1000-3045.2012.03.016.
    3金愿,程进辉,王坤,等.几种典型熔盐冷却剂的热物性研究[J].核技术,2016,39(5):050604.DOI:10.11889/j.0253-3219.2016.hjs.39.050604.JIN Yuan,CHENG Jinhui,WANG Kun,et al.Thermal study several typical molten salt coolant[J].Nuclear Techniques,2016,39(5):050604.DOI:10.11889/j.0253-3219.2016.hjs.39.050604.
    4 Meinec Ke W,Bohn M.Solar energy concentrating systems,applications and technologies[M].Germany:Heidelberg,1995.
    5 Ho C,Mehos M,Turchi C,et al.Probabilistic analysis of power tower systems to achieve sunshot goals[J].Energy Procedia,2014,49(1):1410?1419.DOI:10.1016/j.egypro.2014.03.150.
    6朱建坤.太阳能高温熔盐传热蓄热系统设计及实验研究[D].北京:北京工业大学,2006.ZHU Jiankun.Heat transfer heat storage system design and experimental study of solar high-temperature molten salt[D].Beijing:Beijing University of Technology,2006.
    7 Gill D D,Kolb W J,Briggs R J.An evaluation of pressure and flow measurement in the molten salt test loop(MSTL)system[R].SAND2013-5366,US:Sandia National Laboratories,2013.
    8 Tallackson J R,Moore R L,Ditto S J.Instrumentation and controls development for molten-salt breeder reactors[R].ORNL-TM-1856,US:Oak Ridge National Laboratory,1967.
    9 Li J H.Calibration of flow meter by standard meter method and evaluation of uncertainty[C].Proceedings of the 12th International Conference on Flow Measurement,Beijing,2004:5.
    10 Yermishin S M,Lopatin A V,Dulev V A,et al.Measuring set including a virtual standards technology-based superimposed ultrasonic flow meter[C].Proceedings of the 12th International Conference on Flow Measurement,Beijing,2004:6.
    11 Liu Q,Wang R D,Zhu Y,et al.An algorithm to eliminate stochastic jump measurements of ultrasonic flow-meter with time difference method[C].Intelligent Information Technology Application Association,Manufacturing Systems and Industry Application,Beijing,2011:8.
    12孙露,孙立成,阎昌琪.ORNL 10 MW熔盐实验堆(MSRE)排盐罐冷却系统热工水力特性分析[J].核技术,2012,35(10):790?794.SUN Lu,SUN Licheng,YAN Changqi.ORNL 10 MWmolten salt experimental reactor(MSRE)salt drainage tank cooling system thermal hydraulics analysis[J].Nuclear Techniques,2012,35(10):790?794.
    13卢洋,贺建,朱志强,等.液态铅铋电磁流量计初步标定实验与分析[J].核技术,2014,37(8):080603.DOI:10.11889/j.0253-3219.2014.hjs.37.080603.LU Yang,HE Jian,ZHU Zhiqiang,et al.Preliminary calibration test and analysis of electromagnetic flow-meter in liquid lead-bismuth[J].Nuclear Techniques,2014,37(8):080603.DOI:10.11889/j.0253-3219.2014.hjs.37.080603.
    14陈道龙.永磁式钠流量计的研制[J].核动力工程,1991,12(2):26?33.CHEN Daolong.Development of permanent magnet sodium meter[J].Nuclear Power Engineering,1991,12(2):26?33.
    15吴宜灿,黄群英,朱志强,等.中国系列液态锂铅实验回路设计与研发进展[J].核科学与工程,2009,29(2):161?169.WU Yican,HUANG Qunying,ZHU Zhiqiang,et al.Liquid lithium lead test circuit design and development progress in China[J].Nuclear Science and Engineering,2009,29(2):161?169.
    16陈五星,夏庚磊,彭敏俊.中国实验快堆主冷却系统建模与仿真研究[J].核动力工程,2014,35(2):105?109.CHEN Wuxing,XIA Genglei,PENG Minjun.Chinese experimental fast modeling and simulation of the primary cooling system[J].Reactor Nuclear Power Engineering,2014,35(2):105?109.
    17王俊涛,桑培勇.可变粘度液体流量标准装置的研究[J].工业计量,2013,23(4):27?29.WANG Juntao,SANG Peiyong.Variable viscosity liquid flow standard device[J].Industrial Measurement,2013,23(4):27?29.
    18李复.可压缩流体的伯努利方程[J].大学物理,2008,27(8):15?18.LI Fu.Bernoulli’s equation for compressible flow[J].College Physics,2008,27(8):15?18.
    19汪全全,尹聪聪,孙雪静,等.TMSR核功率控制系统的PID设计与仿真[J].核技术,2015,38(2):020601.DOI:10.11889/j.0253-3219.2015.hjs.38.020601.WANG Quanquan,YIN Congcong,SUN Xuejing,et al.PID design and simulation of TMSR nuclear power control system[J].Nuclear Techniques,2015,38(2):020601.DOI:10.11889/j.0253-3219.2015.hjs.38.020601.
    20宗国强,陈博,张龙,等.FLi Na K熔盐的制备[J].核技术,2014,37(5):050604.DOI:10.11889/j.0253-3219.2014.hjs.37.050604.ZONG Guoqiang,CHEN Bo,ZHANG Long,et al.Preparation of FLi Na K molten salt[J].Nuclear Techniques,2014,37(5):050604.DOI:10.11889/j.0253-3219.2014.hjs.37.050604.
    21 Ignatiev V V,Feynberg O S,Zagnit Ko A V,et al.Molten salt reactors:new possibilities,problems and solutions[J].Atomic Energy,2012,112(3):157?165.
    22 Zhou J G,Zhang J Z.Monte Carlo simulation on automatic calibration method of horizontal tanks[C].Proceedings of 2014 International Conference on Industrial Engineering and Information Technology,Beijing,2014:3.
    23 Fan S W,Cao Z,Xu L J,et al.Numerical solution of the weight function for electromagnetic flowmeter[J].Computer Aided Drafting Design&Manufacturing,2010,20(2):36?41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700