中煤阶煤声波速度对孔隙度的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Acoustic Wave Velocity to Porosity of Medium Rank Coal
  • 作者:冯绍盛 ; 夏鹏 ; 曾凡桂
  • 英文作者:FENG Shaosheng;XIA Peng;ZENG Fangui;Department of Earth Science & Engineering, Taiyuan University of Technology;Shanxi Key Laboratory of Coal and Coal Measure Gas Geology, Taiyuan University of Technology;
  • 关键词:中煤阶煤 ; 围压 ; 孔隙度 ; 声波速度 ; 各向异性
  • 英文关键词:medium rank coal;;confining pressure;;porosity;;acoustic wave velocity;;anisotropy
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:太原理工大学地球科学与工程系;煤与煤系气地质山西省重点实验室;
  • 出版日期:2019-02-20
  • 出版单位:煤矿安全
  • 年:2019
  • 期:v.50;No.536
  • 语种:中文;
  • 页:MKAQ201902012
  • 页数:5
  • CN:02
  • ISSN:21-1232/TD
  • 分类号:58-62
摘要
以西山煤田古交矿区中煤阶煤为例,研究了中煤阶煤加载过程中煤样孔隙度和声波速度的变化及其相互关系。研究结果表明:随着加载过程中围压的增大,煤样的孔隙度以指数形式减小,并且不同方向孔隙度对围压变化的敏感程度不同;煤样声波速度随围压增大表现出非线性增大趋势,且煤样具有波速各向异性;在前人研究的基础上,利用孔隙度及波速与围压的关系式,通过围压建立波速与孔隙度的关系,提供了1种适用于古交矿区利用波速数据近似预测煤储层孔隙度的方法。
        We study the changes and relation of porosity and acoustic wave velocity during loading with the medium rank coal from Gujiao Mine Area of Xishan Coalfield. The research results show that with the increase of confining pressure, the coal samples porosity decrease exponentially. And the porosity in different directions has different stress sensitivity during confining pressure changing. With the increasing of confining pressure, the nonlinear increasing of the acoustic wave velocity in the coal samples can be got. And velocity anisotropy can be found in coal samples. On the basis of previous studies, the relationship between wave velocity and porosity is founded using confining pressure state as a bridge. It can provide a methodology to estimate approximately porosity from acoustic wave velocity to Gujiao Mine Area.
引文
[1]姚艳斌,刘大锰,汤达祯,等.沁水盆地煤储层微裂隙发育的煤岩学控制机理[J].中国矿业大学学报,2010,39(1):6-13.
    [2] Tudge J, Tobin H J. Velocity-porosity relationships insmectite-rich sediments:Shikoku Basin, Japan[J].Geochemistry, Geophysics, Geosystems, 2013, 14(12):5194-5207.
    [3] Kassab M A, Weller A. Porosity estimation from com-pressional wave velocity:a study based on Egyptiansandstone formations[J]. Journal of Petroleum Scienceand Engineering, 2011, 78(2):310-315.
    [4]王云刚,李满贵,陈兵兵,等.干燥及饱和含水煤样超声波特征的实验研究[J].煤炭学报,2015,40(10):2445-2450.
    [5] Wang H, Pan J, Wang S, et al. Relationship betweenmacro-fracture density, P-wave velocity, and permeabil-ity of coal[J]. Journal of Applied Geophysics, 2015,117:111-117.
    [6]陈平中,薄冬晦,赵永军.煤储层储集性能主控因素分析[J].石油天然气学报,2010,32(1):13-21.
    [7]代平,孙良田,李闽.低渗透砂岩储层孔隙度、渗透率与有效应力关系研究[J].天然气工业,2006,26(5):93-95.
    [8]陈德飞,康毅力,孟祥娟,等.变应力条件下气体吸附对煤岩渗流特性的影响[J].油气地质与采收率,2016,23(1):107-112.
    [9]尹尚先,王尚旭.弹性模量、波速与应力的关系及其应用[J].岩土力学,2003,24(增刊):597-601.
    [10]周枫.裂隙对煤岩超声波速度影响的实验—以沁水盆地石炭系煤层为例[J].煤田地质与勘探,2012,40(2):71-74.
    [11]赵群,郝守玲.煤样的超声速度和衰减各向异性测试实例[J].地球物理学进展,2006,21(2):531-534.
    [12]李琼,何建军,曹均.沁水盆地和顺地区煤层气储层物性特征[J].石油地球物理勘探,2013,48(5):734.
    [13]郭德勇,冯志亮.围压下构造煤的波速特征实验研究[J].煤炭科学技术,1998,26(4):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700