用卤虫与小球藻联合培养法净化养殖废水的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of zooplankton-phytoplankton combined culture on treatment of aquaculture wastewater
  • 作者:古倩怡 ; 岑黔鸿 ; 李袁源 ; 何凯 ; 陈研茹 ; 陶吉鸿 ; 殷安齐 ; 李洪武
  • 英文作者:GU Qian-yi;CEN Qian-hong;LI Yuan-yuan;HE Kai;CHEN Yan-ru;TAO Ji-hong;YIN An-qi;LI Hong-wu;State Key Laboratory of Marine Resources Utilization in South China Sea,Hainan University;College of Medicine,Southwest Jiaotong University;Guangzhou Liyang Aquaculture Technology Joint Stock Limited Company;College of Life Sciences and Ecology,Hainan Tropical Ocean University;
  • 关键词:卤虫 ; 小球藻 ; 养殖废水 ; 氨氮 ; 总磷
  • 英文关键词:Artemia salina;;Chlorella sp.;;aquaculture wastewater;;ammonia nitrogen;;total phosphorus
  • 中文刊名:DLSC
  • 英文刊名:Journal of Dalian Ocean University
  • 机构:海南大学南海海洋资源利用国家重点实验室;西南交通大学医学院;广州利洋水产科技股份有限公司;海南热带海洋学院生命科学与生态学院;
  • 出版日期:2019-01-04 15:21
  • 出版单位:大连海洋大学学报
  • 年:2018
  • 期:v.33
  • 基金:海南省自然科学基金资助项目(20154173);; 国家自然科学基金资助项目(41566002);; 海南省高等学校科学研究项目(Hnky2016ZD-4);; 海南省重点研发计划项目(ZDYF2016154);; 2016年度海南省研究生创新科研课题(Hys2016-18);; 海南大学2016年研究生实践创新项目;; 海南大学大学生创新创业训练计划项目(201710589185)
  • 语种:中文;
  • 页:DLSC201806011
  • 页数:6
  • CN:06
  • ISSN:21-1575/S
  • 分类号:70-75
摘要
为研究环境友好、不产生二次污染的新型养殖废水处理技术,采用卤虫Artemia salina和小球藻Chlorella vulgaris联合培养的方法,在实验室条件下进行了卤虫和小球藻联合培养对养殖废水中悬浮物、氨氮和总磷处理效果的试验,试验设0 (空白)、100、200、400 ind./L 4个卤虫无节幼体密度组。结果表明:卤虫与小球藻联合处理养殖废水第7天时悬浮物含量降至最低,各试验组与空白组有显著性差异(P<0. 05);第17天时400 ind./L卤虫密度组氨氮去除率高达93. 53%,200 ind./L卤虫组总磷去除率达91. 39%;卤虫生长试验显示,在养殖废水中虫藻联合培养的卤虫体长从第5天开始显著高于海水组(P<0. 05);卤虫与小球藻联合培养处理养殖废水,对氨氮和总磷的去除率均超过90%,最佳试验组为200ind./L卤虫组。本研究结果为处理水产养殖废水开拓了新途径,并能切实应用于生产实践。
        Naupli of brine shrimp Artemia salina was reared in aquaculture wastewater at density of 0( control group),100,200,and 400 individuals/L for 7 days and then co-cultured with green alga Chlorella sp. for 17 days in a laboratory to explore brine shrimp-green alga combined treatment effect on removal of suspended substance( SS),ammonia nitrogen and total phosphorus in aquaculture wastewater. The SS content was found to be to the minimum in aquaculture wastewater 7 days after treatment,with significant difference between each experimental group and the control group( P<0.05). The maximal removal rate( 93.53%) of ammonia nitrogen was observed in the 400 ind./L group,and the maximal removal rate of total phosphorus( 91.39%) at 200 ind./L group in 17 day treatment,with significant difference in body length of the brine shrimp between brine shrimp-green alga combined treatment group and the control group( P<0.05). The removal rates of ammonia nitrogen and total phosphorus were as high as 90% from aquaculture wastewater in brine shrimp-green alga combined treatment,with the best removal effects of ammonia nitrogen and total phosphorus in 200 ind./L group. The findings indicate that brine shrimp-green alga combined treatment of aquaculture effluent not only provides live food for aquaculture to reduce costs,but also deals with aquaculture wastewater as a new effective and practical way.
引文
[1] Qin Gang,Liu C C K,Richman N H,et al.Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology:a pilot study on Coconut Island,Hawaii[J]. Aquacultural Engineering,2005,32(3-4):365-378.
    [2] Cao Ling,Wang Weimin,Yang Yi,et al.Environmental impact of aquaculture and countermeasures to aquaculture pollution in China[J].Environmental Science and Pollution Research-International,2007,14(7):452-462.
    [3]邹俊良,杨京平,杨虎.水生植物-滤食性动物用于水产养殖废水净化的研究[J].浙江大学学报:农业与生命科学版,2013,39(4):444-451.
    [4] Frances J,Allan G L,Nowak B F.The effects of nitrite on the shor t-term growth of silver perch(Bidyanus bidyanus)[J]. Aquaculture,1998,163(1-2):63-72.
    [5] Zhang L,Xiong D M,Li B,et al.Toxicity of ammonia and nitrite to yellow catfish(Pelteobagrus fulvidraco)[J]. Journal of Applied Ichthyology,2012,28(1):82-86.
    [6] Bulc T G,lsteniˇc D,Klemenˇciˇc A K.The efficiency of a closedloop chemical-free water treatment system for cyprinid fish farms[J].Ecological Engineering,2011,37(6):873-882.
    [7] Fahnenstiel G L,Lang G A,Nalepa T F,et al.Effects of zebra mussel(Dreissena polymorpha)colonization on water quality parameters in Saginaw Bay,Lake Huron[J]. Journal of Great Lakes Research,1995,21(4):435-448.
    [8] Erk M,lvankovi c'D,Raspor B,et al.Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins[J].Talanta,2002,57(6):1211-1218.
    [9] Hall P O J,Holby O,Kollberg S,et al.Chemical flux and mass balances in a marine fish cage farm.IV. Nitrogen[J]. Marine Ecology Progress Series,1992,89:81-91.
    [10]邹俊良.生物集成系统净化水产养殖废水的研究[D].杭州:浙江大学,2013.
    [11]卢晓明,金承翔,黄民生,等.底栖软体动物净化富营养化河水实验研究[J].环境科学与技术,2007,30(7):7-9.
    [12]孟顺龙,吴伟,胡庚东,等.底栖动物螺蛳对池塘底泥及水质的原位修复效果研究[J].环境污染与防治,2011,33(6):44-47.
    [13]卜雪峰,曲克明,马绍赛,等.海水养殖废水的处理技术及应用前景[J].海洋水产研究,2003,24(4):85-90.
    [14]曲克明,卜雪峰,马绍赛.贝藻处理工厂化养殖废水的研究[J].海洋水产研究,2006,27(4):36-43.
    [15] Kioussis D R,Wheaton F W,Kofinas P. Reactive nitrogen and phosphorus removal from aquaculture wastewater effluents using polymer hydrogels[J]. Aquacultural Engineering,2000,23(4):315-332.
    [16]张志伟,栾生,郑波,等.中华卤虫不同日龄生长性状间的相关性分析[J].水产学报,2010,34(2):213-219.
    [17]白岩.卤虫中天然虾青素制备及降糖降脂作用研究[D].北京:中央民族大学,2013.
    [18]李洪武,宋培学.海洋浮游生物学[M].2版.合肥:中国科学技术大学出版社,2015:168-171.
    [19]吕福荣,杨海波,李英敏.小球藻净化污水中氮磷能力的研究[J].生物学杂志,2003,20(2):25-26,34.
    [20]张桐雨.几种海藻对养殖废水中氮磷去除率的研究[D].海口:海南大学,2014.
    [21]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 17378.4-2007海洋监测规范第4部分:海水分析[S].北京:中国标准出版社,2008.
    [22] Hamza F,Vaidya A,Apte M,et al. Selenium nanoparticle-enriched biomass of Yarrowia lipolytica enhances growth and survival of Artemia salina[J].Enzyme and Microbial Technology,2017,106:48-54.
    [23]卜雪峰.贝藻处理海水养殖废水的应用研究[D].青岛:中国海洋大学,2004.
    [24]马晓娜,李甍,孙国祥,等.贝藻混养对大西洋鲑养殖废水的生物滤除[J].海洋科学,2016,40(1):32-39.
    [25]赖龙玉.鲍藻混养模式的研究[M].厦门:集美大学,2014.
    [26] Martins C I M,Eding E H,Verdegem M C J,et al.New developments in recirculating aquaculture systems in Europe:a perspective on environmental sustainability[J]. Aquacultural Engineering,2010,43(3):83-93.
    [27] La Rosa T,Mirto S,Mazzola A,et al.Benthic microbial indicators of fish farm impact in a coastal area of the Tyrrhenian Sea[J].Aquaculture,2004,230(1-4):153-167.
    [28] Alongi D M.Present state and future of the world's mangrove forests[J].Environmental Conservation,2002,29(3):331-349.
    [29] Eddy F B.Ammonia in estuaries and effects on fish[J].Journal of Fish Biology,2005,67(6):1495-1513.
    [30] Jones A B,Dennison W C,Preston N P.Integrated treatment of shrimp effluent by sedimentation,oyster filtration and macroalgal absorption:a laboratory scale study[J]. Aquaculture,2001,193(1-2):155-178.
    [31]杨福利,李秀辰,白晓磊,等.小球藻脱氮除磷及其生物量增殖潜力的研究[J].大连海洋大学学报,2014,29(2):193-197.
    [32]葛长字.大型海藻在海水养殖系统中的生物净化作用[J].渔业现代化,2006(4):11-13.
    [33]叶挺,赵明明,郑怀平,等.利用大型海藻净化养殖牡蛎体内重金属的研究[J].中国农学通报,2017,33(31):160-164.
    [34] Crini G.Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment[J]. Progress in Polymer Science,2005,30(1):38-70.
    [35]韦玮,方建光,董双林,等.贝藻混养互利机制的初步研究[J].海洋水产研究,2002,23(3):20-25.
    [36]金晓杰,刘继晨,张涛,等.纳米Fe2O3-SnO2光催化降解海水养殖废水中的氨氮[J].应用海洋学学报,2018,37(1):77-83.
    [37]田欣欣.丙烯酸改性壳聚糖磁性颗粒去除水产养殖废水中氨氮的研究[D].泉州:华侨大学,2013.
    [38]刘永,曹广斌,蒋树义,等.冷水性鱼类工厂化养殖中臭氧催化氧化降解氨氮[J].中国水产科学,2005,12(6):790-795.
    [39]万红,宋碧玉.序批式生物膜法处理水产养殖废水的研究[J].水生态学杂志,2008,1(2):81-84.
    [40]王加鹏,崔正国,周强,等.人工湿地净化海水养殖外排水效果与微生物群落分析[J].渔业科学进展,2014,35(6):1-9.
    [41]叶志娟,刘兆普.盐藻在海水养殖废水中的生长及对废水的净化作用[J].湖北农业科学,2015,54(1):39-42.
    [42]郭恩彦,谭洪新,罗国芝,等.臭氧/生物活性炭深度处理循环养殖废水[J].环境污染与防治,2009,31(10):6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700