基于分形建模的高煤级煤孔隙结构特征量化表征——以阳泉矿区山西组煤样为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative characterization of pore structure characteristics of high quality coal based on fractal modeling:taking coal samples from Shanxi Formation in Yangquan Mining Area as an example
  • 作者:赵迪斐 ; 郭英海 ; WANG ; GEOFF ; 刘静 ; 王琳琳
  • 英文作者:ZHAO Difei;GUO Yinghai;WANG GEOFF;LIU Jing;WANG Linlin;Key Laboratory of Coal-bed Methane Resources and Reservoir Formation Process of Ministry of Education,China University of Mining and Technology;School of Resources and Geosciences,China University of Mining and Technology;School of Chemical Engineering,University of Queensland;Low Carbon Energy Institute,China University of Mining and Technology;Jiangsu Key Laboratory of Coal-based CO2Capture and Geological Storage,China University of Mining and Technology;
  • 关键词:孔隙结构 ; 分形特征 ; 纳米孔 ; 孔隙分类 ; 高煤级煤 ; 山西组 ; 阳泉矿区
  • 英文关键词:pore structure;;fractal characteristics;;nanoscale;;pore classification;;high quality coal;;Shanxi Formation;;Yangquan Mining Area
  • 中文刊名:DQSY
  • 英文刊名:Journal of Northeast Petroleum University
  • 机构:中国矿业大学煤层气资源与成藏过程教育部重点实验室;中国矿业大学资源与地球科学学院;昆士兰大学化工学院;中国矿业大学低碳能源研究院;中国矿业大学江苏省煤基CO2捕集与地质储存重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:东北石油大学学报
  • 年:2019
  • 期:v.43;No.217
  • 基金:国家自然科学基金项目(41772130);; 国家重点基础研究发展计划(973计划)项目(2012CB214702);; 山西省煤基重点科技攻关项目(MQ201402);; 教育部中央高校科研业务专项基金(2017CXNL03);; 中国矿业大学煤层气资源与成藏过程教育部重点实验室开放基金资助项目(2015-007);中国矿业大学资源与地球科学学院大学生学术科研中心科研创新项目(CSA2019-07)
  • 语种:中文;
  • 页:DQSY201903006
  • 页数:15
  • CN:03
  • ISSN:23-1582/TE
  • 分类号:8+65-78
摘要
以阳泉矿区山西组煤样为例,根据高压压汞及分形建模,获取高煤级煤孔隙结构特征参数,结合氩离子抛光—场发射扫描电镜,识别微—纳米尺度的孔隙发育类型及结构特征,明确储集空间构成及孔隙结构对煤中气体的影响,构建气体行为与孔隙结构的关系。结果表明:阳泉矿区山西组高煤级煤储层孔隙结构复杂,在不同发育尺度具有不同的分形特征;基于孔隙结构特征、分形特征和多孔介质甲烷的分子动力学特征,将孔隙划分为3个大类(超微吸附孔隙、纳米扩散孔隙和微纳米渗流孔隙)和5个小类(超微孔隙、分子扩散孔隙、Knudsen扩散孔隙、层流滑移孔隙和紊流滑移孔隙),将基质孔隙气体的运移方式划分为吸附相—固溶相扩散场、Knudsen扩散场、层流场及紊流场,多数高煤级煤样品层流滑移孔隙的不发育表明层流场的弱势发育。量化高煤级煤储层微观储集空间,建立孔隙结构与煤层气渗流、运移的关系,为高煤级煤层气勘探开发、地质理论研究提供依据。
        Taking coal samples from the Shanxi Formation in Yangquan Mining Area as an example,the pore structure parameters of high-quality coal are obtained according to high pressure mercury injection and fractal modeling.Combined with argon ion polishing-field emission scanning electron microscopy,the pore development types and structural characteristics of micro-nano scale are identified,and the influence of reservoir space composition and pore structure on gas in coal is clarified by establishing the relationship between gas behavior and pore structure.The results show that the pore structure of high quality coal reservoir is complex and presents different fractal characteristics of different development scales.The reservoir pores are divided into 3 types(ultra-micro scale-adsorption pores,nanoscale-diffusion pores and micro-nano scale-seepage pores)and 5 subcategories(ultra-micro pores,molecular scalediffusion pores,Knudsen diffusion pores,laminar slip pores and turbulent slip pores)based on the pore structure characteristics,fractal characteristics and kinetic characteristics of methane molecular in porous media.The migration modes of gases in coal matrix are divided into adsorption phase-solid solution phase diffusion field,Knudsen diffusion field,laminar flow field and turbulent flow field.The poor development of laminar slip pores in high-quality coal samples indicates the weak development of laminar flow field.Quantifying micro-reservoir space of high-quality coal reservoir and establishing the relationship between pore structure and migration of CBM will provide basis for exploration and development of high-quality coal-bed methane and geological theory research.
引文
[1]冯增朝,赵阳升,文再明.煤岩体孔隙裂隙双重介质逾渗机理研究[J].岩石力学与工程学报,2005,24(2):236-236.FENG Zengchao,ZHAO Yangsheng,WEN Zaiming.Percolation mechanism of fractured coal rocks as dual-continua[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(2):236-236.
    [2]CAI Y D,LIU D M,PAN Z J,et al.Pore structure and its impact on CH4adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J].Fuel,2013,103(1):258-268.
    [3]YAO Y B,LIU D M,TANG D Z,et al.Fractal characterization of adsorption-pores of coals from North China:an investigation on CH4adsorption capacity of coals[J].International Journal of Coal Geology,2008,73(1):27-42.
    [4]LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2015,79(12):848-861.
    [5]SUN H,YAO J,CAO Y C,et al.Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis[J].International Journal of Heat &Mass Transfer,2017,104(7):227-239.
    [6]WANG Y,AGOSTINI F,SKOCZYLAS F,et al.Experimental study of the gas permeability and bulk modulus of tight sandstone and changes in its pore structure[J].International Journal of Rock Mechanics &Mining Sciences,2017,91(1):203-209.
    [7]MOORE T A.Coalbed methane:a review[J].International Journal of Coal Geology,2012,101(6):36-81.
    [8]KARACAN CO,RUIZ F A,COTE M,et al.Coal mine methane:a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J].International Journal of Coal Geology,2011,86(2):121-156.
    [9]FLORES R M.Coalbed methane:from hazard to resource[J].International Journal of Coal Geology,1998,35(1):3-26.
    [10]YAO S P,JIAO K,ZHANG K,et al.An atomic force microscopy study of coal nanopore structure[J].Chinese Science Bulletin,2011,56(25):2706-2712.
    [11]姚素平,焦堃,李苗春,等.煤和干酪根纳米结构的研究进展[J].地球科学进展,2012,27(4):367-378.YAO Suping,JIAO Kun,LI Miaochun,et al.Advances in research of coal and kerogen nanostructure[J].Advances in Earth Science,2012,27(4):367-378.
    [12]赵迪斐,郭英海,毛潇潇,等.基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J].煤炭学报,2017,42(6):1517-1526.ZHAO Difei,GUO Yinghai,MAO Xiaoxiao,et al.Characteristics of macro-nanopores in anthracite coal based on mercury injection,nitrogen adsorption and FE-SEM[J].Journal of China Coal Society,2017,42(6):1517-1526.
    [13]ZHAO D F,GUO Y H,GEOFF W,et al.Characteristizing nanoscale pores and its structure in coal-experimental investigation[J].Energy Exploration &Exploitation,2019,37(3):1-28.
    [14]ZHAO Y,SUN Y F,LIU S M,et al.Pore structure characterization of coal by NMR cryoporometry[J].Fuel,2017,190(2):359-369.
    [15]MOSHER K,HE J,LIU Y,et al.Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J].International Journal of Coal Geology,2013,109:36-44.
    [16]CAI Y D,LIU D M,PAN Z J,et al.Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis[J].Transport in Porous Media,2016,111(4):479-497.
    [17]贺闪闪,赵迪斐,刘静,等.基于低温氮气吸附的无烟煤吸附孔隙结构与分形特征表征[J].煤炭技术,2019,38(1):66-69.HE Shanshan,ZHAO Difei,LIU Jing,et al.Characterization of adsorption pore structure and fractal characteristics in anthracite coal based on low temperature nitrogen adsorption[J].Coal Technology,2019,38(1):66-69.
    [18]赵迪斐,郭英海,朱炎铭,等.海相页岩储层微观孔隙非均质性及其量化表征[J].中国矿业大学学报,2018,47(2):296-307.ZHAO Difei,GUO Yinghai,ZHU Yanming,et al.Micropore heterogeneity of marine shale reservoirs and its quantitative characterization[J].Journal of China University of Mining &Technology,2018,47(2):296-307.
    [19]SUN W J,FENG Y Y,JIANG C F,et al.Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coalmine layers[J].Fuel,2015,155(9):7-13.
    [20]KROOSS B M,BERGEN F V,GENSTERBLUM Y,et al.High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian Coals[J].International Journal of Coal Geology,2002,51(2):69-92.
    [21]ZHU H J,JU Y W,YU Q,et al.Impact of tectonism on pore type and pore structure evolution in organic-rich shale:implications for gas storage and migration pathways in naturally deformed rocks[J].Fuel,2018,228(9):272-289.
    [22]THOMMES M.Physical adsorption characterization of nanoporous materials[J].Chemie Ingenieur Technik,2010,82(7):1059-1073.
    [23]KUILA U,PRASAD M.Specific surface area and pore-size distribution in clays and shales[J].Geophysical Prospecting,2013,61(2):341-362.
    [24]OKOLO G N,EVERSON R C,NEOMAGUS H W J P,et al.Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J].Fuel,2015,141(2):293-304.
    [25]程泽虎,李文浩,薛海涛,等.基于高压压汞技术和分形理论的致密砂岩储层分级评价标准[J].东北石油大学学报,2019,43(1):50-59.CHENG Zehu,LI Wenhao,XUE Haitao,et al.Grading evaluation criteria of tight sandstone reservoir based on high pressure mercury injection technology and fractal theory[J].Journal of Northeast Petroleum University,2019,43(1):50-59.
    [26]赵迪斐,郭英海,解徳录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108.ZHAO Difei,GUO Yinghai,XIE Delu,et al.Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J].Journal of Northeast Petroleum University,2014,38(6):100-108.
    [27]赵迪斐,郭英海,郑德志,等.五峰组—龙马溪组页岩孔隙结构与非均质特征研究[J].煤炭科学技术,2016,44(8):182-187.ZHAO Difei,GUO Yinghai,ZHEN Dezhi,et al.Study on pore structure and heterogeneous of shale in Wufeng Formation-Longmaxi Formation[J].Coal Science and Technology,2016,44(8):182-187.
    [28]毛潇潇,赵迪斐,卢晨刚,等.氩离子抛光—场发射扫描电镜在煤纳米孔研究中的应用[J].电子显微学报,2016,35(1):90-96.MAO Xiaoxiao,ZHAO Difei,LU Chengang,et al.The application of argon ion polishing-field emission scanning electron microscopy to the research on coal nanopores[J].Journal of Chinese Electron Microscopy Society,2016,35(1):90-96.
    [29]张锟,侯昌海,赵迪斐,等.煤与页岩低温氮吸附孔隙结构特征与分形特征对比:以阳泉地区山西组15#煤与页岩为例[J].科学技术与工程,2016,16(29):68-75.ZHANG Kun,HOU Changhai,ZHAO Difei,et al.Comparison of pore structure characteristics fractal characteristics between coal and shale through nitrogen adsorption experiment with the example of Shanxi Formation 15#coal and shale in Yangquan Area[J].Science Technology and Engineering,2016,16(29):68-75.
    [30]孙玉琦.古交矿区山西组沉积环境及其对煤层气富集的影响[D].徐州:中国矿业大学,2015:10-18.SUN Yuqi.Sedimentary environment and its influence on coal-bed methane concentration of Shanxi Formation in Gujiao Mining Area[D].Xuzhou:China University of Mining and Technology,2015:10-18.
    [31]秦勇,申建,沈玉林.叠置含气系统共采兼容性:煤系“三气”及深部煤层气开采中的共性地质问题[J].煤炭学报,2016,41(1):14-23.QIN Yong,SHEN Jian,SHEN Yulin.Joint mining compatibility of superposed gas-bearing systems:ageneral geological problem for extraction of three natural gases and deep CBM in coal series[J].Journal of China Coal Society,2016,41(1):14-23.
    [32]宋儒,苏育飞,陈小栋.山西省深部煤系“三气”资源勘探开发进展及研究[J].中国煤炭地质,2019,31(1):53-58.SONG Ru,SU Yufei,CHEN Xiaodong.Exploration and exploitation progress and study on deep coal measures"Triple-gas"resources in Shanxi Province[J].Coal Geology of China,2019,31(1):53-58.
    [33]SHUAI Y,ZHANG S,MI J,et al.Charging time of tight gas in the Upper Paleozoic of the Ordos Basin,Central China[J].Organic Geochemistry,2013,64(6):38-46.
    [34]韩贝贝.西山古交区块煤储层孔渗特性与有利建产区预测[D].徐州:中国矿业大学,2015:38-60.HAN Beibei.Porosity and permeability characteristics of coal reservoirs in Xishan Gujiao Block and prediction of favorable production areas[D].Xuzhou:China University of Mining and Technology,2015:38-60.
    [35]赵迪斐,郭英海,任呈瑶,等.过渡相页岩气储层纳米级孔隙发育特征与影响因素:以太原西山古交地区山西组为例[J].东北石油大学学报,2018,42(5):1-16.ZHAO Difei,GUO Yinghai,REN Chengyao,et al.Development characteristics and influencing factors of nanopores in transitional shale reservoirs:an example of the Shanxi Formationan[J].Journal of Northeast Petroleum University,2018,42(5):1-16.
    [36]HODOT B B.Outburst of coal and coalbed gas(Chinese Translation)[M].Beijing:China Industry Press,1966:318.
    [37]ZHANG S H,TANG S H,TANG D Z,et al.The characteristics of coal reservoir pores and coal facies in Liulin District,Hedong Coal Field of China[J].International Journal of Coal Geology,2010,81(2):117-127.
    [38]YAO Y B,LIU D M,TANG D Z,et al.Fractal characterization of seepage-pores of coals from China:an investigation on permeability of coals[J].Computers &Geosciences,2009,35(6):1159-1166.
    [39]LIU S Q,SANG S X,LIU H H,et al.Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui Basin[J].Ore Geology Reviews,2015,64(1):140-151.
    [40]RADLINSKI A P,MASTALERZ M,HINDE A L,et al.Application of SAXS and SANS in evaluation of porosity,pore size distribution and surface area of coal[J].Internat Onal Journal of Coal Geology,2004,59(3):245-271.
    [41]韩贝贝,秦勇,张政,等.基于压汞试验的煤可压缩性研究及压缩量校正[J].煤炭科学技术,2015,43(3):68-72.HAN Beibei,QIN Yong,ZHANG Zheng,et al.Study on coal compressibility and correction of compression amount based on compressibility of mercury injection test[J].Coal Science and Technology,2015,43(3):68-72.
    [42]FRIESEN W I,MIKULA R J.Fractal dimensions of coal particles[J].Journal of Colloid &Interface Science,1987,120(1):263-271.
    [43]FU X H,QIN Y,ZHANG W H,et al.Fractal classification and natural classification of coal pore structure based on migration of coal bed methane[J].Chinese Science Bulletin,2005,50(Supp.1):66-71.
    [44]毛潇潇,赵迪斐,杨玉娟,等.阳泉新景矿高煤级煤的孔隙结构分形特征[J].煤田地质与勘探,2017,45(2):59-66.MAO Xiaoxiao,ZHAO Difei,YANG Yujuan,et al.Fractal characteristics of pore structure in high rank coals from Xinjing Coal Mine,Yangquan[J].Coal Geology &Exploration,2017,45(2):59-66.
    [45]赵迪斐,郭英海,解徳录,等.马溪组下部页岩储层孔隙结构特征与评价方案:以重庆南川三泉剖面泉浅1井为例[J].煤炭学报,2014,39(增刊2):452-457.ZHAO Difei,GUO Yinghai,XIE Delu,et al.Characteristics and evaluation scheme of shales reservoir pores of the lower part of Longmaxi Formation:a case study at Chongqing Nanchuan Sanquan Quanqian Well One[J].Journal of China Coal Society,2014,39(Supp.2):452-457.
    [46]LIU S,HARPALANI S.Evaluation of in situ stress changes with gas depletion of coalbed methane reservoirs[J].Journal of Geophysical Research Solid Earth,2015,119(8):6263-6276.
    [47]YANG F,NING Z F,LIU H.Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin,China[J].Fuel,2014,115(1):378-384.
    [48]JING W,LIU H Q,LEI W,et al.Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects[J].International Journal of Coal Geology,2015,152(3):50-62.
    [49]LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2015,96(6):1071-1098.
    [50]CHALMERS G R L,BUSTIN R M.On the effects of petrographic composition on coalbed methane sorption[J].International Journal of Coal Geology,2007,69(4):288-304.
    [51]李希建,沈仲辉,刘钰,等.黔西北构造煤与原生结构煤孔隙结构对吸解特性影响实验研究[J].采矿与安全工程学报,2017,34(1):170-176.LI Xijian,SHEN Zhonghui,LIU Yu,et al.The experimental research on the impact of pore structure in tectonic coal and primary structure coal on gas adsorption-desorption characteristics in Northwestern Guizhou[J].Journal of Mining &Safety Engineering,2017,34(1):170-176.
    [52]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):8-12.YE Jianping,SHI Baosheng,ZHANG Chuncai.Coal reservoir permeability and its controlled factors in China[J].Journal of China Coal Society,1999,24(2):8-12.
    [53]傅雪海,秦勇,姜波,等.高煤级煤储层煤层气产能"瓶颈"问题研究[J].地质论评,2004,50(5):507-513.FU Xuehai,QIN Yong,JIANG Bo,et al.Study on the"Bottle-Neck"problem of coalbed methane productivity of high-rank coal reservoirs[J].Geological Review,2004,50(5):507-513.
    [54]降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,2011,36(4):609-614.JIANG Wenping,SONG Xiaozhong,ZHONG Lingwen.Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J].Journal of China Coal Society,2011,36(4):609-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700