江汉盆地当阳向斜区主要不整合面剥蚀厚度的中低温热年代学约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Erosion Thickness of the Main Unconformities of Dangyang Subbasin,Jianghan Basin:Constrained by the Middle-Low Thermochronology
  • 作者:施小斌 ; 石红才 ; 杨小秋 ; 蒋海燕 ; 龙幼康 ; 吴保珍
  • 英文作者:SHI Xiaobin1),SHI Hongcai1,2),YANG Xiaoqiu1),JIANG Haiyan1,2),LONG Youkang3),WU Baozhen1,2) 1) Key Laboratory of Marginal Sea Geology,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou,510301;2) Graduate of University,Chinese Academy of Sciences,Beijing,100049;3) Exploration and Development Research Institute of Jianghan Oil Field Branch Company,SINOPEC,Wuhan,430223
  • 关键词:中扬子地块 ; 剥蚀厚度 ; 磷灰石裂变径迹 ; (U-Th-Sm)/He ; 镜质体反射率
  • 英文关键词:Middle Yangtze Block;erosion thickness;apatite fission track;(U-Th-Sm)/He;vitrinite reflectance
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国科学院边缘海地质重点实验室,南海海洋研究所;中国科学院研究生院;江汉油田勘探开发研究院;
  • 出版日期:2013-08-15
  • 出版单位:地质学报
  • 年:2013
  • 期:v.87
  • 基金:中石化海相前瞻性课题(YPH08057)资助的成果
  • 语种:中文;
  • 页:DZXE201308005
  • 页数:13
  • CN:08
  • ISSN:11-1951/P
  • 分类号:30-42
摘要
本文利用磷灰石裂变径迹、(U-Th-Sm)/He及镜质体反射率Ro%等古温标方法综合分析了江汉盆地当阳向斜区主要不整合面剥蚀厚度。结果表明:发育于古近纪末期不整合面T1界面累积剥蚀厚度超过1000m,且局部正反转区域如谢家湾断褶带等则遭受更大规模的剥蚀,剥蚀厚度可能超过2000m,而发育于晚侏罗世—早白垩世的不整合面T11界面累积剥蚀厚度超过4000m,且主要是晚侏罗世—早白垩世构造事件的结果,表明该期剥蚀量明显大于古近纪末T1界面剥蚀量;晚三叠世—侏罗纪期间,当阳地区发育前陆坳陷带,侏罗纪堆积体具有明显东厚西薄的楔形体特征,位于盆地东部的前渊区沉积厚度可超过5000m;包括现今三叠系和侏罗系出露区以及江陵凹陷局部断隆区在内的前白垩系在侏罗纪前陆坳陷带发育时期达到最大埋深和最高古温度,其Ro%主要是该期获得的;晚白垩世—古近纪发育的断陷盆地范围可能远比现今残留盆地分布广,江陵凹陷上白垩统—古近系厚度超过9000m,其中古近系可能超过7000m,而在河溶凹陷谢家湾断褶带古近系厚度可超过3300m。
        Middle-Low thermochronological data,including apatite fission track,(U-Th-Sm)/He and vitrinite reflectance,were used to analyze the erosion thickness occurring at the two main unconformities.Results shows that the accumulated erosion thickness at the unconformity T1 during late Paleogene is more than1000m,and in some tectonic inverse area such as Xiejiawan fault-fold belt,erosion thickness might be larger than 2000 m.While the accumulated erosion thickness at the other main unconformity T11,which developed during Late Jurassic through Early Cretaceous,is larger than 4000 m,most of which was eroded during the Late Jurassic through Early Cretaceous tectonic event,indicating that the eroded thickness during this period is much larger than that of the unconformity T1 happened at the end of Paleogene.During Late Triassic through Jurassic,the studied area developed foreland basin with a wedge Jurassic strata obviously thicker in the eastern region.The Jurassic sediment thickness in the eastern foredeep was larger than 5000 m.The pre-Cretaceous formation in the Triassic and Jurassic outcrop area and some local fault-fold belts in Jiangling sag obtained its deepest depth and highest temperature,thus its Ro% during the Jurassic foreland basin,was buried;The original rifted basin developed during Late Cretaceous through Paleogene was much larger than nowadays residual basin,the thickness of the upper Cretaceous-Paleogene was larger than 9000m,where the Paleogene might be thicker than 7000 m,and the Paleogene in Xiejiawan fault-fold belt of Herong sag might be larger than 3300 m.
引文
戴少武.2002.中扬子及邻区层序地层与原型盆地演化.石油与天然气地质,23(3):229~235.
    杜治利,王清晨.2007.中新生代天山地区隆升历史的裂变径迹证据.地质学报,81(8):1081~1101.
    郭彤楼,李国雄,曾庆立.2005.江汉盆地当阳复向斜当深3井热史恢复及其油气勘探意义.地质科学,40(4):570~578.
    湖北省地质矿产局.1990.湖北省区域地质志.北京:地质出版社,1~645.
    胡圣标,汪集暘,张容燕.1999.利用镜质体反射率数据估算地层剥蚀厚度.石油勘探与开发,26(4):42~45.
    刘海军,许长海,周祖翼,Donelick R A.2009.黄陵隆起形成(165~100Ma)的碎屑岩磷灰石裂变径迹热年代学约束.自然科学进展,19(12):1326~1332.
    刘景彦,林畅松,卢林,蔡文杰,王必金,董伟.2009.江汉盆地白垩-新近系主要不整合面剥蚀量分布及其构造意义.地质科技情报,28(1):1~8.
    刘小玲,曾庆立,王韶华,李国雄.1997.当阳复向斜上组合生烃潜力及其含油气系统.海相油气地质,2(3):45~51.
    施小斌,汪集旸,罗晓容.2000.古温标重建沉积盆地热史的能力探头.地球物理学报,43(3):386~392.
    邱楠生,秦建中,Brent I A M,王杰,腾格尔,郑伦举.2008.川东北地区构造-热演化探讨——来自(U-Th)/He年龄和Ro的约束.高校地质学报,14(2):223~230.
    王韶华,宋明雁,李国雄.2002.江汉盆地南部二叠系烃源岩热演化特征.油气地质与采收率,9(3):31~33.
    田蜜,施炜,李建华,渠洪杰.2010.江汉盆地西北部断陷带构造变形分析与古应力场演化序列.地质学报,84(2):159~170.
    叶舟,支家生,梁兴,张廷山,徐克定.2005.江汉盆地前白垩系油气勘探前景展望.天然气工业,25(2):14~19.
    袁玉松,朱传庆,胡圣标.2007.江汉盆地热流史、沉积构造演化与热事件.地球物理进展,22(3):934~939.
    郑冰.2008.中扬子区多源、多期油气成藏地球化学研究.成都:成都理工大学博士学位论文.
    Brandon M T.1992.Decomposition of fission track dating grain-agedistributions.American Journal of Science,292:535~564.
    Brandon M T,Roden T M K,Garver J I.1998.Late Cenozoicexhumation of the Cascadia accretionary wedge in the OlympicMountains,northwest Washington State.Geological Society ofAmerica Bulletin,100:982~1009.
    Donelick R A.1993.A method of fission track analysis utilizingbulk chemical etching of apatite.U.S.Patent Number6,267,274.
    Dunkl I.2002.Trackkey:a Windows program for calculation andgraphical presentation of fission track data.Computer&Geosciences,28,3~12.
    Farley K A,Wolf R A,Silver L T.1996.The effects of long alpha-stopping distances on(U-Th)/He ages.Geochimica etCosmochimica Acta,60(21):4223~4229
    Gleadow A J W,Duddy I R,Green P F,Lovering J F.1986.Confined fission track lengths in apatite:A diagnostic tool forthemal history analysis.Contrib.Mineralog.Petrol,94:405~415.
    Green P F,Duddy I R,Hegarty K A.2002.Quantifyingexhumation from apatite fission-track analysis and vitrinitereflectance data:precision,accuracy and latest results from theAtlantic margin of NW Europe.Geological Society,London,Special Publications,196:331~354.
    Grist A M,Ravenhurst C E.1992.A step-by-step laboratory guideto fission track thermochronology at Dalhousie University.In:Zentilli M,Reynolds P(Eds).Low temperaturethermochronology.Short Course Handbook,MieralogicalAssociation of Canada,20:190~201.
    Grobe R,Marron J A,Glasmacher U A,Duarte R M.2010.Low-temperature exhumation history of Variscan-age rocks in thewestern Cantabrian Mountains(NW Spain)recorded by apatitefission-track data.Tectonophysics,489:76~90.
    Hu Shengbiao,Kohn P K,Raza A,Wang Jiyang,Gleadow A J W.2006.Cretaceous and Cenozoic cooling history across theultrahigh pressure Tongbai-Dabie belt,central China,fromapatite fission-track thermochronology.Tectonophysics,420(3-4):409~429.
    Ketcham R A,Donelick R A,Carlson W D.1999.Variability ofapatite fission-track annealing kinetics;III,Extrapolation togeological time scales.American Mineralogist,84(9):1235~1255.
    Ketcham R A.2005.Forward and inverse modeling of low-temperature thermochronometry data.Reviews in Mineralogyand Geochemistry,58(1):275~314.
    Liu Shaofeng,Steel R,Zhang Guowei.2005.Mesozoic sedimentarybasin development and tectonic implication,northern YangtzeBlock,eastern China:Record of continent-continent collision.Journal of Asian Earth Sciences,25:9~27.
    Qiu Nansheng,Wang Jiyang,Mei Qinghua,Jiang Guang,TaoCheng.2010.Constraints of(U-Th)/He ages on early Paleozoic tectonothermal evolution of the Tarim Basin,China.ScienceChina:Earth Sciences,53(7):964~976.
    Shi Xiaobin,Kohn B,Spencer S,Guo Xingwei,Li Yamin,YangXiaoqiu,Shi Hongcai,Gleadow A J W.2011.Cenozoicdenudation history of southern Hainan Island,South China Sea:Constraints from low temperature thermochronology.Tectonophysics,504:100~115.
    Stockli D F,Farley K A,Dumitru T A.2000.Calibration of the(U-Th)/He thermochronometer on an exhumed normal faultblock in the White Mountains,eastern California and westernNevada.Geology,28:983~986.
    Sweeney J J,Burnham A K.1990.Evaluation of a simple model ofvitrinite reflectance based on chemical kinetics.AAPG Bull,74:1559~1570.
    Wolf M R,Stockli D F.2010.Zircon(U-Th)/Hethermochronometry in the KTB drill hole,Germany,and itsimplications for bulk He diffusion kinetics in zircon.Earth andPlanetary Science Letters,295:69~82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700