东海和黄海沉积物中海洋自生来源对支链四醚类化合物的贡献
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contribution of endogenous brGDGTs to marine sediments in the East China and Yellow seas
  • 作者:王先绪 ; 贾国东
  • 英文作者:WANG Xian-xu;JIA Guo-dong;CAS Key Laboratory of Ocean and Marginal Sea Geology, Guangzhou Institute of Geochemistry;University of Chinese Academy of Sciences;State Key Laboratory of Marine Geology, Tongji University;
  • 关键词:海洋沉积物 ; 支链GDGT ; 来源 ; 海洋自生 ; 陆地土壤
  • 英文关键词:ocean sediments;;brGDGTs;;source;;oceanic in situ production;;terrestrial soils
  • 中文刊名:DQHX
  • 英文刊名:Geochimica
  • 机构:中国科学院广州地球化学研究所边缘海地质重点实验室;中国科学院大学;同济大学海洋地质国家重点实验室;
  • 出版日期:2019-01-26
  • 出版单位:地球化学
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(41276072)
  • 语种:中文;
  • 页:DQHX201901007
  • 页数:9
  • CN:01
  • ISSN:44-1398/P
  • 分类号:81-89
摘要
近些年,支链甘油二烷基甘油四醚类脂物(brGDGTs)被广泛应用于陆地古气候、古环境重建研究中,并取得了一系列的进展。brGDGTs在海洋沉积物中普遍存在,起初被认为是陆源输入的结果,但越来越受到质疑。在中国东海和黄海区域,brGDGTs的相关研究还相对较少。本文分析了位于南黄海和东海北部的4个站位年龄跨度近百年的柱状岩芯,讨论了brGDGTs相关参数的特点,在此基础上探讨了brGDGTs的来源。结果显示,岩芯沉积物中brGDGTs分布样式与已发表的黄河和长江流域土壤中brGDGTs分布样式存在显著差别,暗示了海洋微生物自生brGDGTs的存在。在假设岩芯沉积物中brGDGTs主要由长江和黄河流域土壤输入和海洋微生物自生三端元贡献的情况下,用四甲基brGDGTs百分含量(%tetra)和四甲基环化指数(#Ring_(tetra))参数计算了三个端元的相对贡献和绝对变化情况。结果表明海洋自生是沉积物中brGDGTs的主要贡献者,在南黄海中北部可达70%以上。从百余年来的沉积序列来看海洋自生brGDGTs的含量有增加的趋势,这种趋势可能与海水的富营养化增强有关,也可能是随沉积深度增加降解加强的结果。
        Recently, brGDGTs were widely applied in terrestrial paleo-climatic and paleo-environmental reconstructions. brGDGTs are ubiquitous in marine sediments and are typically considered to be derived from soils, though this assumption is increasingly in doubt. In this work, we analyzed brGDGTs in four sediment cores from the East China and Yellow seas. These cores covered a history of approximately 100 years. BrGDGT compound distributions from these marine sediments are discussed to elucidate their sources. We found that the brGDGT distribution in the studied marine sediments greatly differed from that in the soils from the catchments of the Changjiang and the Yellow rivers, suggesting considerable endogenous production of brGDGTs. Given that brGDGTs in core sediments are derived from three end members, i.e. soils from the Changjiang and Yellow rivers, and in-situ marine production, the relative contributions of the three were calculated based on %tetra and #Ringtetra parameters. The calculated results show that marine in-situ production was the dominant source of the sedimentary brGDGTs, accounting for up to > 70% in the two cores in the central and northern part of the southern Yellow Sea. There is a consistent increasing trend in marine in-situ production over the past 100 years in the four sediment cores, which could have been caused by eutrophication in the marginal seas, or alternatively, associated with enhanced degradation of brGDGTs with sediment depth.
引文
[1]Schouten S,Hopmans E C,Sinninghe DamstéJ S.The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:A review[J].Org Geochem,2013,54:19-61.
    [2]Sinninghe DamstéJ S,Rijpstra W I C,Hopmans E C,Weijers J W H,Foesel B U,Overmann J,Dedysh S N.13,16-Dimethyl octacosanedioic acid(iso-diabolic acid):A common membrane-spanning lipid of Acidobacteria subdivisions 1 and3[J].Appl Environ Microbiol,2011,77(12):4147-4154.
    [3]Weijers J W H,Schouten S,Van den Donker J C,Hopmans EC,Sinninghe DamstéJ S.Environmental controls on bacterial tetraether membrane lipid distribution in soils[J].Geochim Cosmochim Acta,2007,71(3):703-713.
    [4]Peterse F,van der Meer J,Schouten S,Weijers,J W H,Fierer N,Jackson R B,Kim J M,Sinninghe DamstéJ S.Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J].Geochim Cosmochim Acta,2012,96:215-229.
    [5]De Jonge C,Hopmans E C,Zell C I,Kim J H,Schouten S,Sinninghe DamstéJ S.Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:Implications for palaeoclimate reconstruction[J].Geochim Cosmochim Acta,2014,141:97-112.
    [6]Yang H,Pancost R D,Dang X Y,Zhou X Y,Evershed R P,Xiao G Q,Tang C Y,Gao L,Guo Z T,Xie S C.Correlations between microbial tetraether lipids and environmental variables in Chinese soils:Optimizing the paleo-reconstructions in semi-arid and arid regions[J].Geochim Cosmochim Acta,2014,126:49-69.
    [7]Zheng F F,Zhang C L,Chen Y F,Li F Y,Ma C L,Pu Y,Zhu YQ,Wang Y L,Liu W G.Branched tetraether lipids in Chinese soils:Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies[J].Sci China Earth Sci,2016,59(7):1353-1367.
    [8]Naafs B D A,Gallego-Sala A V,Inglis G N,Pancost R D.Refining the global branched glycerol dialkyl glycerol tetraether(brGDGT)soil temperature calibration[J].Org Geochem,2017,106:48-56.
    [9]Peterse F,Prins M A,Beets C J,Troelstra S R,Zheng H B,Gu Z Y,Schouten S,Sinninghe DamstéJ S.Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J].Earth Planet Sci Lett,2011,301(1/2):256-264
    [10]Gao L,Nie J S,Clemens S,Liu W G,Sun J M,Zech R,Huang Y S.The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese Loess Plateau[J].Palaeogeogr Palaeoclimatol Palaeoecol,2012,317/318:128-133.
    [11]Jia G D,Rao Z G,Zhang J,Li Z Y,Chen F H.Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau[J].Front Microbiol,2013,4:199.
    [12]Lu H X,Liu W G,Wang H Y,Wang Z.Variation in 6-methyl branched glycerol dialkyl glycerol tetraethers in Lantian loess-paleosol sequence and effect on paleotemperature reconstruction[J].Org Geochem,2016,100:10-17.
    [13]Tang C Y,Yang H,Dang X Y,Xie S C.Comparison of paleotemperature reconstructions using microbial tetraether thermometers of the Chinese loess-paleosol sequence for the past350000 years[J].Sci China Earth Sci,2017,60(6):1159-1170.
    [14]Weijers J W H,Schefuss E,Schouten S,Sinninghe DamstéJ S.Coupled thermal and hydrological evolution of tropical Africa over the Last Deglaciation[J].Science,2007,315(5819):1701-1704.
    [15]Ge H M,Zhang C L,Li J,Versteegh G J M,Hu B Q,Zhao J T,Dong L.Tetraether lipids from the southern Yellow Sea of China:Implications for the variability of East Asia Winter Monsoon in the Holocene[J].Org Geochem,2014,70:10-19.
    [16]Ge H M,Zhang C L,Versteegh G J M,Chen L L,Fan D D,Dong L,Liu J J.Evolution of the East China Sea sedimentary environment in the past 14 kyr:Insights from tetraethersbased proxies[J].Sci China Earth Sci,2016,59(5):927-938.
    [17]Bendle J A,Weijers J W H,Maslin M A,Sinninghe DamstéJS,Schouten S,Hopmans E C,Boot C S,Pancost R D.Major changes in glacial and Holocene terrestrial temperatures and sources of organic carbon recorded in the Amazon fan by tetraether lipids[J].Geochem Geophys Geosyst,2010,11(12):Q12007.
    [18]Dong L,Li Q Y,Li L,Zhang C L.Glacial-interglacial contrast in MBT/CBT proxies in the South China Sea:Implications for marine production of branched GDGTs and continental teleconnection[J].Org Geochem,2015,79:74-82.
    [19]Zhu C,Weijers J W H,Wagner T,Pan J M,Chen J F,Pancost R D.Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin[J].Org Geochem,2011,42(4):376-386.
    [20]Zhou H D,Hu J F,Spiro B,Peng P A,Tang J H.Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China:Indicators of sea surface temperature and effects of their sources[J].Palaeogeogr Palaeoclimatol Palaeoecol,2014,395:114-121.
    [21]Huguet C,Hopmans E C,Febo-Ayala W,Thompson D H,Sinninghe DamstéJ S,Schouten S.An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids[J].Org Geochem,2006,37(9):1036-1041.
    [22]Schouten S,Huguet C,Hopmans E C,Kienhuis M V M,Sinninghe DamstéJ S.Improved analytical methodology of the TEX86 paleothermometry by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry[J].Anal Chem,2007,79(7):2940-2944.
    [23]Sinninghe DamstéJ S.Spatial heterogeneity of sources of branched tetraethers in shelf systems:The geochemistry of tetraethers in the Berau River delta(Kalimantan,Indonesia)[J].Geochim Cosmochim Acta,2016,186:13-31.
    [24]Wang H Y,Liu W G,Zhang C L,Wang Z,Wang J X,Liu Z H,Dong H L.Distribution of glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and surrounding soil[J].Org Geochem,2012,47:78-87.
    [25]Wang H Y,Liu W G,Zhang C L.Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid-subhumid China:Implications for palaeorainfall reconstructions on the Chinese Loess Plateau[J].Biogeosciences,2014,11(23):6755-6768.
    [26]Cao J T,Rao Z G,Jia G D,Xu Q H,Chen F H.A 15 ka pHrecord from an alpine lake in north China derived from the cyclization ratio index of aquatic brGDGTs and its paleoclimatic significance[J].Org Geochem,2017,109:31-46.
    [27]Schoon P L,De Kluijver A,Middelburg J J,Downing J A,Sinninghe DamstéJ S,Schouten S.Influence of lake water pHand alkalinity on the distribution of core and intact polar branched glycerol dialkyl glycerol tetraethers(GDGTs)in lakes[J].Org Geochem,2013,60:72-82.
    [28]Weijers J W H,Schefu?E,Kim J H,Sinninghe DamstéJ S,Schouten S.Constraints on the sources of branched tetraether membrane lipids in distal marine sediments[J].Org Geochem,2014,72:14-22.
    [29]Jiang T,Yu Z M,Song X X,Cao X H,Yuan Y Q.Long-term ecological interactions between nutrient and phytoplankton community in the Changjiang estuary[J].Chinese J Oceanol Limnol,2010,28(4):887-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700