大兴安岭中段闹牛山浅成热液铜多金属矿床流体包裹体研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STUDY OF FLUID INCLUSION OF NAONIUSHAN EPITHERMAL Cu-POLYMETALLIC DEPOSIT IN THE CENTRAL GREAT XING′AN RANGE
  • 作者:古阿雷 ; 孙景贵 ; 白令安 ; 赵克强 ; 王忠禹 ; 李俊建 ; 付超
  • 英文作者:GU Alei;SUN Jinggui;BAI Lingan;ZHAO Keqiang;WANG Zhongyu;LI Junjian;FU Chao;Tianjin Center of Geological Survey,China Geological Survey (CGS);College of Earth Science,Jilin University;Guilin University of Technology;Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences;Ningxia Geological Survey;
  • 关键词:流体包裹体 ; H-O同位素 ; 流体演化 ; 闹牛山铜多金属矿床 ; 大兴安岭中段
  • 英文关键词:fluid inclusion;;H-O isotope;;fluid evolution;;Naoniushan Cu-polymetallic deposit;;central Great Xing′an Range
  • 中文刊名:KWYS
  • 英文刊名:Journal of Mineralogy and Petrology
  • 机构:天津地质调查中心;吉林大学地球科学学院;桂林理工大学地球科学学院;中国地质科学院地球物理地球化学勘察研究所;宁夏回族自治区地质调查院;
  • 出版日期:2018-09-25
  • 出版单位:矿物岩石
  • 年:2018
  • 期:v.38;No.153
  • 基金:国家自然科学基金项目(41390444,41172072,41202042);; 中国地质调查项目(DD20160112)
  • 语种:中文;
  • 页:KWYS201803005
  • 页数:12
  • CN:03
  • ISSN:51-1143/TD
  • 分类号:30-41
摘要
闹牛山浅成热液铜多金属矿床是大兴安岭中部浅成热液-斑岩铜多金属矿集区内重要的矿床之一,矿床产于早白垩统玛尼吐组陆相酸性火山岩中;矿体呈脉状、网脉状、角砾状产出,受断裂控制;金属硫化物主要为黄铜矿、黄铁矿、磁黄铁矿、毒砂等。热液成矿过程可划分为4个阶段:(Ⅰ)石英-黄铁矿-辉钼矿-毒砂阶段,(Ⅱ)石英-黄铁矿-磁黄铁矿-黄铜矿阶段,(Ⅲ)石英-闪锌矿-方铅矿-黄铜矿阶段和(Ⅳ)石英-碳酸盐阶段。实验数据表明:流体包裹体的类型可分为纯气相包裹体(V型)、纯液相包裹体(L型)、气液两相盐水溶液包裹体(W型)和含子矿物的三相包裹体(S型),其中以W型居多。从早到晚矿化阶段流体发生了一系列连续变化,均一温度分别为405℃~260℃,407℃~183℃,368℃~170℃和183℃~109℃,盐度w(NaCleq)依次为3.05%~43.83%,0.35%~46.56%,0.35%~8.67%和0.71%~3.69%。激光拉曼光谱分析表明成矿流体属于H_2O-NaClCO_2±CH_4±(Mg/Ca)CO_3体系。氢-氧同位素分析结果显示,大兴安岭中段浅成热液铜矿床的初始含矿流体为残余岩浆水,成矿过程中,大气降水逐渐混入,成矿晚期演化为大气降水。综合分析认为闹牛山浅成热液铜多金属矿床成矿的主要机制是流体沸腾和混合作用,流体混合作用在主成矿期及成矿中晚期发挥着更重要的作用。
        Ore bodies in the Naoniushan epithermal Cu-polymetallic deposit,central Great Xing′an Range,are hosted in lower Cretaceous Manitu Formation acidic volcanic rocks,occurred in the forms of veins,net veins and breccias,and controlled by faults.Metal sulphide minerals in the ore are composed of chalcopyrite,pyrite,pyrrhotite,arsenopyrite and so on.The main successive mineralization stages are as follows:(Ⅰ)Quartz-pyrite-molybdenite-arsenopyrite stage,(Ⅱ)Quartzpyrite-pyrrhotite-chalcopyrite stage,(Ⅲ)Quartz-galena-sphalerite-chalcopyrite stage,and(Ⅳ)Quartz-carbonate stage.Four types of fluid inclusions are identified as pure gas inclusions(Vtype),pure liquid inclusions(L-type),gas-liquid two-phase inclusions(W-type,as the main FIs),and daughter-mineral-bearing polyphase inclusions(S-type).The fluid experienced regular evolution from the early to late stage.It reveals that the homogenization temperatures of different stages are 405℃~260℃,407℃~183℃,368℃~170℃,and 183℃~109℃,respectively;and the salinities are 3.05%~43.83%,0.35%~46.56%,0.35%~8.67%,and 0.71% ~3.69%,respectively.Laser Raman analysis shows that the ore forming fluids belong to the H_2O-NaCl-CO_2±CH_4±(Mg/Ca)CO_3 system.Character of H-O isotopes indicate that initial ore-forming fluid is mainly derived from the residual magma,then mixed with meteoric water during mineralization,and finally transfer to meteoric water.It is considered that the mineralization mechanism is the combination of liquid boiling and mixing action,and the mixing action plays an important role in the major mineralization stage as well as in the mid-late mineralization stage.
引文
[1]贺海根,杨永强,武利文,等.大兴安岭中段闹牛山铜金矿床的硫铅同位素地球化学特征与成矿物质来源[J].地质找矿论丛,2017,32(1):24-32.
    [2]毛景文,张建东,郭春丽.斑岩铜矿-浅成低温热液银铅锌一远接触带热液金矿矿床模型:一个新的矿床模型---以德兴地区为例[J].地球科学与环境学报,2010,32(1):1-14.
    [3]耿文辉,姚金炎.内蒙古东部闹牛山铜矿成矿地质背景分析[J].矿产与地质,2004,18(3):240-244.
    [4]李忠军.闹牛山铜矿床次火山岩及与成矿的关系[J].矿产与地质,1995,(3):153-159.
    [5]张百胜.闹牛山铜矿床火山机构控矿特征及次火山岩系列演化[J].矿产与地质,2000,14(5):299-302.
    [6]张勇,孙景贵,邢树文,等.吉林大黑山斑岩型钼矿床流体包裹体研究[J].矿物岩石,2014,34(1):22-29.
    [7]杨凤超,宋运红,柴鹏,等.辽宁白云金矿床成矿流体特征、成矿物质源及成因研究[J].矿物岩石,2017,37(1):30-39.
    [8]Wu F Y,Jahn B M,Wilde S,et al.Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J].Tectonophysics,2000,328(1):89-113.
    [9]王忠禹,孙景贵,白令安,等.内蒙古莲花山铜矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄[J].地质通报,2014,(9):1 320-1 325.
    [10]葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3):749-762.
    [11]Ouyang H G,Wu X L,Mao J W,et al.The nature and timing of ore formation in the Budunhua copper deposit,southern Great Xing′an Range:Evidence from geology,fluid inclusions,and U-Pb and Re-Os geochronology[J].Ore Geology Reviews,2014,63:238-251.
    [12]盛继福,傅先政,贾栓虎,等.大兴安岭中段成矿环境与铜多金属矿床地质特征[M].北京:地震出版社,1999,1-216.
    [13]Gu A L,Men L J,Sun J G,et al.Origin and evolution of ore fluids in the late Mesozoic Naozhi epithermal Au-Cu deposit,Yanbian area,Northeast China:evidence from fluid inclusion and isotopic geochemistry[J].Arabian Journal of Geosciences,2016,9:1-15.
    [14]Hall D L,Sterner S M,Bodnar R J.Freezing point depression of NaCl-KCl-H[J].Economic Geology,1988,83(1):197-202.
    [15]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004,1-488.
    [16]Driesner T,Heinrich C A.The system H2O-NaCl.Part I:Correlation formulae for phase relations in pressure-temperature-composition space from 0to 1 000℃,0to 5 000bar,and 0to 1X-NaCl[J].Geochimica Et Cosmochimica Acta,2007,71(20):4 880-4 901.
    [17]白令安.大兴安岭中北部热液铜矿床的成矿机制与资源预测[D].长春:吉林大学,2013,1-141.
    [18]武新丽,毛景文,周振华,等.大兴安岭中南段布敦化铜矿床H-O-S-Pb同位素特征及成矿指示[J].中国地质,2012,39(6):1 812-1 829.
    [19]Clayton R N,O′Neil J R,Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research,1972,77(17):3 057-3 067.
    [20]王旭辉,邓煜霖,娄渝明,等.斑岩型铜矿成矿流体特征及研究进展[J].四川地质学报,2017,37(2):228-232.
    [21]王元龙,张旗,王强,等.埃达克质岩与Cu-Au成矿作用关系的初步探讨[J].岩石学报,2003,19(3):543-550.
    [22]张文淮,张志坚,伍刚.成矿流体及成矿机制[J].地学前缘,1996,3(3-4):245-252.
    [23]翟德高,王建平,刘家军,等.内蒙古甲乌拉银多金属矿床成矿流体演化与成矿机制分析[J].矿物岩石,2010,30(2):68-76.
    [24]Gu A L,Sun J G,Bai L A,et al.Petrogenesis and metallogenesis of the Early Cretaceous Naoniushan Cu-dominated polymetallic deposit in the central Great Xing′an Range,NE China[J].Journal of Asian Earth Sciences,2018.
    (1)于锡伟,赵庆祝,刘媛媛,等.吉林省地质局第三地质调查所,吉林省洮南市闹牛山地区铜及多金属矿普查报告[R].2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700