网格内不满足均匀性假设对应力场反演结果的影响——以喜马拉雅东构造结及其周边地区应力场研究为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of the stress field in the grid not satisfies the assumption of uniformity on stress field inversion results:the study of stress field in the Eastern Himalayan Syntaxis and its surrounding area is an example
  • 作者:杨帆 ; 盛书中 ; 万永革 ; 王晓山 ; 刘兆才 ; 李瑶
  • 英文作者:YANG Fan;SHENG Shu-zhong;WAN Yong-ge;WANG Xiao-shan;LIU Zhao-cai;LI Yao;Institute of Disaster Prevention;Earthquake Administration of Hebei Province;Institute of Geophysics,China Earthquake Administration;
  • 关键词:喜马拉雅东构造结 ; 米林地震 ; 震源机制解 ; 应力场 ; 均匀性 ; 网格
  • 英文关键词:Eastern Himalayan Syntaxis;;Miling earthquake;;Focal mechanism;;Stress field;;Uniformity;;Grid
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:防灾科技学院;河北省地震局;中国地震局地球物理研究所;
  • 出版日期:2018-10-25 17:06
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.154
  • 基金:国家自然科学基金项目(41704053,41674055);; 河北省地震科技星火计划(DZ20170109001)共同资助
  • 语种:中文;
  • 页:DQWJ201902009
  • 页数:10
  • CN:02
  • ISSN:11-2982/P
  • 分类号:69-78
摘要
本研究搜集了GCMT中自1976年1月1日至2017年4月30日喜马拉雅东构造结及其周边区域的102个震源机制解数据,应用MSATSI软件反演了该区域的构造应力场.反演结果给出了该区域应力场的总体特征:最大主压应力轴自西向东呈现NNE-NE偏转,最小主压应力轴自西向东呈现NWW-NW-NNW扇形偏转;整个研究区域σ_3轴倾角较小接近水平,σ_1轴倾角情况复杂,大体上自西向东由水平转向直立;R值自西北至东南出现规律性递增现象.根据反演结果,部分网格点中应力轴倾角的置信区间过大,且不同应力轴的置信区间存在重叠现象,同时该部分网格内震源机制解类型多样.针对上述现象,本文利用两种反演方法对单个网格基于不同类型震源机制解数据进行单独反演、利用人工合成震源机制数据进行验证以及各震源机制解相对于参考应力张量的残差分析等方法对其进行了深入的验证和分析,分析结果表明导致这一现象的原因可能是单个网格内应力场不均匀所致,此时应力场反演结果为多个应力场的综合.本研究结果可为后续应力场研究中网格的合理划分以及应力场结果评价提供参考.
        This study inverted the tectonic stress field of Eastern Himalayan Syntaxis and its surrounding areas by using the MSATSI software by means of this region's 102 focal mechanism solutions from January 1, 1976 to April 30, 2017 released in the GCMT catalogue. The inversion results give the general characteristics of the stress field in this area: the maximum principal compressive stress axis shows deflection in NNE-NE direction from west to east, and the minimum principal compressive stress axis shows fan deflection in NWW-NW-NNW direction from west to east; The plunge of σ_3 axis is small in the whole study area, and the plunge of σ_1 axis is complex, generally shifting from horizonta to vertical from west to east; R value appears regular increase from northwest to southeast. According to the inversion result, the confidence interval of the stress axis' plunge in some grid points is too large, moreover the confidence intervals of different stress axis overlap, simultaneously, the types of focal mechanism solutions in these grid are various. In view of the above phenomena, this paper has conducted in-depth verification and analysis by using two inversion methods to invert stress field of single grid basing on different types of focal mechanism solution data, using artificial synthetic focal mechanism data to confirm and residual analysis of each focal mechanism solution relative to the reference stress tensor. The analysis shows that the phenomenon may be caused by the inhomogeneous stress field in a single grid, and the stress field inversion result is the neutralization of multiple stress fields. The results of this study can provide reference for the rational division of the grid and the evaluation of stress field results in the subsequent stress field study.
引文
Bai L, Li G H, Song B W. 2017. The source parameters of the M 6.9 Mainling, Tibet earthquake and its tectonic implications [J]. Chinese J. Geophys. (in Chinese), 60(12): 4956- 4963, doi: 10.6038/cjg20171234.
    Bott M H P. 1959. The mechanics of oblique slip faulting [J]. Geol Mag, 96(2): 109-117.
    Bu Y F, Wan Y G, Zhang Y S. 2013. Tectonic stress analysis in Gansu and its adjacent areas [J]. Seismology and Geology (in Chinese), 35(4): 833-841.
    Cao J L, Shi Y L, Zhang H, et al. 2009. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau [J]. Chinese Science Bulletin (in Chinese), 54(02): 224-234, doi: 10.1007/s11434- 008- 0588-7.
    Cao Y, Wu X P, Shen Y H, et al. 2013. Research on Structural Stress Field Basing on Focal Mechanism Solutions Data in Sichuan-Yunan Area [J]. Journal of Seismological Research (in Chinese), 36(2): 165-172.
    Cui H W, Wan Y G, Huang J C, et al. 2017. The tectonic stress field in the source of the New Britain MS 7.4 earthquake of March 2015 and adjacent areas [J]. Chinese J.Geophys. (in Chinese), 60(3): 985-998, doi: 10.6038/cjg20170313.
    Cui X F, Xie F R. 1999. Preliminary research to determine stress districts from focal mechanism solutions in Southwest China and its adjacent area [J]. Acta Seismologica Sinica (in Chinese), 21(5): 513-522.
    Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity [J]. Journal of Geophysical Research, 86(B4): 2825-2852.
    Ekstr?m G, Nettles M, Dziewoński A M. 2012. The global CMT Project 2004—2010: Centroid-moment tensors for 13017 earthquakes [J]. Physics of the Earth and Planetary Interiors, 200-201: 1-9.
    Ge W P. 2016. GPS Constrained Precent-day Crust Deformation Mechanism of Tibetan Plateau:Evidence from 3D Movements of Altyn Tagh fault and Plateau Crustal Thinning [Ph.D. thesis]. Institute of Geology, China Earthquake Administration(in Chinese).
    Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence [J]. Journal of Geophysical Research, 89 (B11): 9305-9320.
    Guiraud M, Laborde O, Philip H. 1989. Characterization of various types of deformation and their corresponding deviatoric stress tensors using microfault analysis [J]. Tectonophysics, 170(3- 4): 289-316.
    Guo L Q. 2000. Preliminary study on the Horizontal Crustal Deformation in Chinese Mainland [J]. Earthquake Research in China (in Chinese), 16(2): 32- 40.
    Guo L Q, Huang L R. 2000. Study on crustal strain and stress fields in China continent [J]. North China Earthquake Sciences (in Chinese), 18(3): 50-58.
    Guo L Q, Zhou H T, Du X S, et al. 2012. Studies on Stress-strain Field of Chinese Mainland [J]. South China Journal of Seismology (in Chinese), 32(01): 1-10.
    Guo X Y, Chen X Z, Wang S W, et al. 2014. Focal Mechanism of Small and Moderate Earthquakes and Tectonic Stress Field in Sichuan-Yunan Areas [J]. China Earthquake Engineering Journal (in Chinese), 36(3): 599- 607.
    Hardebeck J L, Micheal A J. 2006. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence [J]. Journal of Geophysical Research, 111(B11): B11310.
    Huang J C, Wan Y G, Sheng S Z, et al. 2016. Heterogeneity of present-day stress field in the Tonga-Kermadec subduction zone and its geodynamic significance [J]. Chinese J.Geophys (in Chinese). 59(2): 578-592, doi: 10.6038/cjg20160216.
    Lu Z, Wyss M. 1996. Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solutions [J]. J. Geophys Res., 101(B1): 803-816.
    Lu Z, Wyss M, Pulpan H. 1997. Details of stress directions in the Alaska subduction zone from fault plane solutions [J]. J. Geophys Res., 102(B3): 5385-5402.
    Martínez-Garzón P, Kwiatek G, Ickrath M, et al. 2014. MSATSI: a MATLAB package for stress inversion Combining solid classic methodology, a new simplified user-handling, and a visualization tool [J]. Seismological Research Letters, 85(4): 896-904.
    Michael A J 1984. Determination of Stress from Slip Data: Faults and Folds [J]. J. Geophys. Res., 89(B13): 11517-11526
    Michael A J. 1987. Use of Focal Mechanisms to Determine Stress: A Control Study [J]. J. Geophys. Res., 92(B1): 357-368
    Ratchkovski N A. 2003. Change in stress directions along the central Denali fault, Alaska after the 2002 earthquake sequence [J]. Geophys Res. Lett., 30(19), doi: 10.1029/2003GL017905.
    Shen H L, Fang S M, Fan J C, et al. 2012. Focal mechanism solution and stress field inversion of small and moderate earthquakes in North Henan and its adjacent region [J]. Journal of seismological research (in Chinese), 35(2): 184-189.
    Sheng S Z, Wan Y G. 2012. Segmentation of the Wenchuan earthquake fault derived from tectonic stress analysis [J]. Acta Seismologica Sinica (in Chinese), 34(6): 741-753.
    Sheng S Z, Wan Y G, Huang J C, et al. 2015. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method [J]. Chinese J.Geophys (in Chinese). 58(2): 436- 452, doi: 10.6083/cjg20150208.
    Sheng S Z, Wan Y G, Xu Z G, et al. 2013. Mean stress field inferred from the total seismic moment released by earthquakes [J]. Seismology And Geology (in Chinese), 35(1): 92-100.
    Sun Y J, Zhao X Y, Huang Y, et al. 2017. Characteristics of focal mechanisms and stress field of Yunan area [J]. Seismology And Geology (in Chinese), 39(2): 390- 407.
    Tang F T, Song J, Cao Z Q, et al. 2010. The movement characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS date [J]. Chinese J.Geophys. (in Chinese). 53(9): 2119-2128, doi: 10.3969/j.issn.0001-5733.2010.09.012.
    Tang L L, Zhao C P, Wang H T. 2012. Study on the source characteristics of the 2008 MS 6.8 Wuqia, Xinjiang earthquake sequence and the stress field on the northeastern boundary of Pamir [J]. Chinese J.Geophys. (in Chinese), 55(4): 1228-1239, doi: 10.6038/j.issn.0001-5733.2012.04.018.
    Teng J W, Wang Q S, Wang G J, et al. 2006. Specific gravity field and deep crustal structure of the ‘Himalay as east structural knot’ [J]. Chinese J. Geophys. (in Chinese), 49(4): 1045-1052, doi: 10.3321/j.issn:0001-5733.2006.04.016.
    Wallace R E. 1951. Geometry of shearing stress and relation to faulting [J]. The Journal of Geology, 59(2): 118-130.
    Wan Y G. 2010. Contemporary tectonic stress field in China [J]. Earthquake Science, 23(4): 377-386.
    Wan Y G, Sheng S Z, Huang J C, et al. 2016. The grid search algorithm of tectonic stress tensor based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos [J]. Joural of Earth Science, 27(5): 777-785.
    Wang X S, Lü J, Xie Z J, et al. 2015. Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China [J]. Chinese J. Geophys. (in Chinese), 58(11): 4149- 4162, doi: 10.6038/cjg20151122.
    Wessel P, Smith W H F. 1995. New version of the generic mapping tools [J]. EOS, Transactions American Geophysical Union, 76(33): 329-329.
    Wyss M, Lu Z. 1995. Plate boundary segentation by stress direcyions:Southern San Andreas Fault,California [J].Geophys Res. Lett., 22(5): 547-550.
    Xie F R, Zhu J Z, Liang H Q, et al. 1993. The basic characteristics of recent tectonic stress field in southwest China [J]. Acta Seismologica Sinica (in Chinese), 15(4): 407- 417.
    Xu J R, Zhao Z X. 2006. Characteristics of the regional stress field and tectonic movement on the Qinghai-Tibet Plateau and in its surrounding areas [J]. Geology In China (in Chinese), 33(2): 275-285.
    Xu J R, Zhao Z X, Ishikawa Yuzo. 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland [J]. Chinese J. Geophys. (in Chinese), 51(3): 770-781, doi: 10.3321/j.issn:0001-5733.2008.03.018.
    Xu Z G. 2017. Crustal stress field in SE Tibetan Plateau and its implication for the crust and upper mantle deformation [Master’s thesis]. Nanjing University. (in Chinese).
    Xu Z H. 1985. Mean stress field in Tangshan aftershock area obtained from focal mechanism data by fitting slip directions [J]. Acta Seismologica Sinica(in Chinese), 7(04): 349-362.
    Xu Z H, Ge S M. 1984. Mean stress field in Tangshan aftershock area obtained from focal mechanism data by fitting slip directions [J]. Acta Seismologica Sinica (in Chinese), 6(04): 395- 404.
    Xu Z H, Wang S Y, Huang Y R, et al. 1992. Tectonic stress field of china inferred from a large number of small earthquakes [J]. Journal of Geophysical Research, 97(B8): 11867-11877.
    Yang J Y, Bai L, Li G H, et al. 2017. Seismicity in the eastern Himalayan syntaxis and its tectonic implications [J]. Recent Developments in World Seismology (in Chinese), (06): 12-18.
    Yang Y Q, Wang X S, Wan Y G, et al. 2016. Seismogenic fault segmentation of Tangshan earthquake sequence derived from focal mechanism solutions [J]. Acta Seismologica Sinica (in Chinese), 38(4): 632- 643, doi: 10.11939/jass.2016.04.009.
    Zhang P Z, Shen Z K, Wang M. et al. 2004. Kinematics of present-day tectonic deformation of the tibetan plateau and its vicinities [J]. Seismology And Geology (in Chinese), 26(03): 367-377.
    Zhang P Z, Wang Q, Ma Z J. 2002. GPS velocity field and active crustal deformation in and around the qinghai-tibet plateau [J]. Earth Science Frontiers (in Chinese), 9(02): 442- 450.
    Zhang X L. 2003. Deformation Characteristics of GPS Velocity Field over the Tibetan Plateau and Dynamic Mechanism of Rock Circle Deformation [Master’s thesis]. Changan University(in Chinese).
    Zoback M L. 1992. First-and second-order patterns of stress in the lithosphere: The World Stress Map Project [J]. Journal of Geophysical Research, 97(B8): 11703-11728.
    白玲, 李国辉, 宋博文. 2017. 2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 60(12): 4956- 4963, doi: 10.6038/cjg20171234.
    卜玉菲, 万永革, 张元生. 2013. 甘肃及邻近地区的构造应力场[J]. 地震地质, 35(04): 833-841.
    曹建玲, 石耀霖, 张怀, 等. 2009. 青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J]. 科学通报, 54(02): 224-234.
    曹颖, 吴小平, 沈娅宏, 等. 2013. 由震源机制解资料研究川滇地区构造应力场[J]. 地震研究, 36(02): 165-172.
    崔华伟, 万永革, 黄骥超, 等. 2017. 2015年3月新不列颠MS7.4地震震源及邻区构造应力场特征[J]. 地球物理学报, 60(3): 985-998, doi: 10.6038/cjg20170313.
    崔效锋, 谢富仁. 1999. 利用震源机制解对中国西南及邻区进行应力分区的初步研究[J]. 地震学报, 21(05): 513-522.
    葛伟鹏. 2016. GPS观测研究现今青藏高原地壳形变机制[博士论文]. 中国地震局地质研究所.
    郭良迁. 2000. 对中国大陆地壳水平变形的初步探索[J]. 中国地震, 16(02): 32- 40.
    郭良迁, 黄立人. 2000. 中国大陆地壳的应变应力场研究[J]. 华北地震科学, 18(03): 50-58.
    郭良迁, 周海涛, 杜雪松, 等. 2012. 中国大陆应变应力场研究[J]. 华南地震, 32(01): 1-10.
    郭祥云, 陈学忠, 王生文, 等. 2014. 川滇地区中小地震震源机制解及构造应力场的研究[J]. 地震工程学报, 36(03): 599- 607.
    黄骥超, 万永革, 盛书中, 等. 2016. 汤加—克马德克俯冲带现今非均匀应力场特征及其动力学意义[J]. 地球物理学报, 59(02): 578-592, doi: 10.6038/cjg20160216.
    莘海亮, 方盛明, 樊计昌, 等. 2012. 豫北及邻区中小地震震源机制解及应力场反演[J]. 地震研究, 35(02): 184-189.
    盛书中, 万永革. 2012. 由构造应力场研究汶川地震断层的分段性[J]. 地震学报, 34(06): 741-753.
    盛书中, 万永革, 黄骥超, 等. 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报, 58(2): 436- 452, doi: 10.6038/cjg20150208.
    盛书中, 万永革, 徐志国, 等. 2013. 由地震释放的地震矩叠加推导平均应力场[J]. 地震地质, 35(1): 92-100.
    孙业君, 赵小艳, 黄耘, 等. 2017. 云南地区震源机制及应力场特征[J]. 地震地质, 39(02): 390- 407.
    唐方头, 宋键, 曹忠权. 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J]. 地球物理学报, 53(09): 2119-2128, doi: 10.3969/j.issn.0001-5733.2010.09.012.
    唐兰兰, 赵翠萍, 王海涛. 2012. 2008年新疆乌恰6.8级地震序列震源特征及帕米尔东北缘应力场研究[J]. 地球物理学报, 55(04): 1228-1239, doi: 10.6038/j.issn.0001-5733.2012.04.018.
    滕吉文, 王谦身, 王光杰, 等. 2006. 喜马拉雅“东构造结”地区的特异重力场与深部地壳结构[J]. 地球物理学报, 49(04): 1045-1052, doi: 10.3321/j.issn:0001-5733.2006.04.016.
    王晓山, 吕坚, 谢祖军, 等. 2015. 南北地震带震源机制解与构造应力场特征[J]. 地球物理学报, 58(11): 4149- 4162, doi: 10.6038/cjg20151122.
    谢富仁, 祝景忠, 粱海庆, 等. 1993. 中国西南地区现代构造应力场基本特征[J]. 地震学报, 15(04): 408- 417.
    徐纪人, 赵志新. 2006. 青藏高原及其周围地区区域应力场与构造运动特征[J]. 中国地质, 33(02): 275-285.
    徐纪人, 赵志新, 石川有三. 2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报, 51(03): 770-781, doi: 10.3321/j.issn:0001-5733.2008.03.018.
    徐志刚. 2017. 青藏高原东南缘的地壳应力场及其对壳幔变形的指示[硕士论文]. 南京大学.
    许忠淮. 1985. 用滑动方向拟合法反演唐山余震区的平均应力场[J]. 地震学报, 7(04): 349-362.
    许忠淮, 戈澍谟. 1984. 用滑动方向拟合法反演富蕴地震断裂带应力场[J]. 地震学报, 6(04): 395- 404.
    杨建亚, 白玲, 李国辉, 等. 2017. 东喜马拉雅构造结地区地震活动及其构造意义[J]. 国际地震动态, (06): 12-18.
    杨雅琼, 王晓山, 万永革, 等. 2016. 由震源机制解推断唐山地震序列发震断层的分段特征[J]. 地震学报, 38(04): 632- 643.
    张培震, 沈正康, 王敏, 等. 2004. 青藏高原及周边现今构造变形的运动学[J]. 地震地质, 26(03): 367-377.
    张培震, 王琪, 马宗晋. 2002. 青藏高原现今构造变形特征与GPS速度场[J]. 地学前缘, 9(02): 442- 450.
    张晓莉. 2003. 青藏高原GPS速度场的形变特征及岩石圈形变动力机制[硕士论文]. 长安大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700