宣布式可控波形单光子的产生和应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heralded narrowband single photon with controllable waveform:generation and application
  • 作者:颜辉 ; 何君钰 ; 廖开宇 ; 朱诗亮
  • 英文作者:YAN Hui;HE JunYu;LIAO KaiYu;ZHU ShiLiang;Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University;
  • 关键词:宣布式单光子 ; 窄线宽纠缠光子对 ; 冷原子 ; 四波混频 ; 量子信息处理
  • 英文关键词:heralded single photon,narrowband paired photons,cold atom,four wave mixing,quantum information processing
  • 中文刊名:PZKX
  • 英文刊名:Scientia Sinica(Informationis)
  • 机构:广东省量子调控工程与材料重点实验室,华南师范大学物理与电信工程学院;
  • 出版日期:2014-03-20
  • 出版单位:中国科学:信息科学
  • 年:2014
  • 期:v.44
  • 基金:国家自然科学基金(批准号:11104085,11125417,91121023);; 科技部重大研究计划(批准号:2011CB922104);; 教育部创新团队发展计划(批准号:IRT1243)资助项目
  • 语种:中文;
  • 页:PZKX201403011
  • 页数:15
  • CN:03
  • ISSN:11-5846/TP
  • 分类号:120-134
摘要
在时域上操控单光子的波形不但可以应用到基础量子物理研究,也可以应用到量子信息处理.窄线宽纠缠光子对的成功产生让时域上操控单光子的波形成为可能.本文首先介绍了利用四波混频和慢光技术在大光学厚度的冷原子系综中产生窄线宽纠缠光子对,进而获得宣布式可控波形单光子的工作.在此基础上,本文进一步介绍了宣布式可控波形单光子波形的操控.然后介绍宣布式可控波形单光子在基础量子物理和量子通信方面的应用,具体包括:(1)单光子光前驱波;(2)宣布式可控波形单光子与二能级原子相干相互作用;(3)宣布式可控波形单光子差分相位编码量子密钥分发.
        Manipulation of the temporal waveform of single photons not only provides a powerful benchmark tool for fundamental research in quantum physics, but also plays a critical role in quantum information processing.The generation of narrowband paired photons makes it possible for manipulating the temporal waveform of single photons. At first, we reviewed the generation of narrowband photon pairs through four wave mixing and slow light with high optical depth cold atoms. Secondly, we reviewed the generation and manipulation of the heralded narrowband single photons with controllable waveforms. Thirdly, we reviewed the application of the heralded narrowband single photons:(1) single photon precursor;(2) the coherent interaction between the heralded narrowband single photon and two energy level atoms;(3) DPS quantum key distribution with the heralded narrowband single photons.
引文
1 Cohen-Tannoudji C,Dupont-Roc J,Grynberg G.Photons and Atoms:Introduction to Quantum Electrodynamics.New York:Wiley-Interscience,1997.1–486
    2 Planck M.On the law of the energy distribution in the normal spectrum.Verh Dtsch Phys Ges,1900,2:202–209
    3 Planck M.On the theory of the energy distribution law of the normal spectrum.Verh Dtsch Phys Ges,1900,2:237 –244
    4 Ter Haar D.The Old Quantum Theory.Pergamon,Oxford,1967.10–29
    5 Loudon R.The Quantum Theory of Light.New York:Oxford University Press,2000.1–180
    6 Einstein A.Concerning an heuristic point of view toward the emission and transformation of light.Ann Phys,1965,17 :132–148
    7 Arons A B,Peppard M B.Einstein’s proposal of the photon concept–a translation of the annalen der physik paper of1905.Am J Phys,1965,33:367–374
    8 Lewis G N.The conservation of photons.Nature(London),1926,118:874–875
    9 Glauber R J.The quantum theory of optical coherence.Phys Rev,1963,130:2529–2539
    10 Glauber R J.Classical behavior of systems of quantum oscillators.Phys Rev,1966,21:650–652
    11 Gisin N,Ribordy G,Tittel W,et al.Quantum cryptography.Rev Mod Phys,2002,74:145–152
    12 Rarity J,Owens P,Tapster P.Quantum random-number generation and key sharing.J Mod Opt,1994,41:2435–444
    13 Stefanov A,Gisin N,Guinnard O,et al.High speed optical quantum random number generation.J Mod Opt,2000,47 :595–598
    14 ARDA.Technical Report on Quantum Cryptography Technology Experts Panel,Advanced Research and Development Activity,2004.1–88
    15 Bouwmeester D,Ekert A,Zeilinger A.The Physics of Quantum Information:Quantum Cryptography,Quantum Teleportation,Quantum Computation.Berlin:Springer,2000.1–288
    16 Shor P.Scheme for reducing decoherence in quantum computer memory.In:Proceedings of 35th Annual Symposium on Foundations of Computer Science.Los Alamitos:IEEE Computer Society Press,1994.124–134
    17 Lo H K,Ma X,Chen K.Decoy state quantum key distribution.Phys Rev Lett,2005,94:230504–230507
    18 Eisaman M D,Fan J,Migdall A,et al.Invited review article:single-photon sources and detectors.Rev Sci Instru,2011,82:071101–071125
    19 Maurer C,Becher C,Russo C,et al.A single-photon source based on a single Ca+ion.New J Phys,2004,6:94–112
    20 Steiner M,Hartschuh A,Korlacki R,et al.Highly efficient,tunable single photon source based on single molecules.Appl Phys Lett,2007,90:183122–183124
    21 Kako S,Santori C,Hoshino K,et al.A gallium nitride single-photon source operating at 200 K.Nature Mater,2006,5 :887–892
    22 Shields A J.Semiconductor quantum light sources.Nature Photon,2007,1:215–223
    23 Alleaume R,Treussart F,Messin G,et al.Experimental open-air quantum key distribution with a single-photon source.New J Phys,2004,6:92–105
    24 Gaebel T,Popa I,Gruber A,et al.Stable single-photon source in the near infrared.New J Phys,2004,6:98–104
    25 Wu E,Rabeau J R,Roger G,et al.Room temperature triggered single-photon source in the near infrared.New J Phys,2007,9:434–444
    26 Chen S,Chen Y,Strassel T,et al.Deterministic and storable single-photon source based on a quantum memory.Phys Rev Lett,2006,97:173004–173007
    27 Okamoto R,Takeuchi S,Sasaki K.Detailed analysis of a single-photon source using gated spontaneous parametric downconversion.J Opt Soc,2005,22:2393–2401
    28 Liao K Y,Yan H,He J Y,et al.Experimental generation of narrow-band paired photons:from damped Rabi oscillation to group delay.Chin Phys Lett,2014,31:034205–034208
    29 Rarity J G,Tapster P R,Jakeman E.Absolute measurement of detector quantum efficiency using parametric downconversion.Opt Commun,1987,62:4616–4619
    30 Migdall A L,Branning D,Castelletto S.Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source.Phys Rev A,2002,66:053805–053808
    31 Fitch M J,Jacobs B C,Pittman T B,et al.Proposal for a superconducting photon number resolving detector with large dynamic range.Phys Rev A,2003,68:043814–043819
    32 Jeffrey E,Peters N A,Kwiat P G.Towards a periodic deterministic source of arbitrary single-photon states.New J Phys,2004,6:100–113
    33 Shapiro J H,Wong F.On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls.Opt Lett,2007,32:2698–2700
    34 Wilk T,Webster S C,Specht H P,et al.Polarization-controlled single photons.Phys Rev Lett,2007,98:063601–063604
    35 Dayan B,Parkins A S,Aoki T,et al.A photon turnstile dynamically regulated by one atom.Science,2008,319:1062–1065
    36 Aoki T,Parkins A S,Alton D J,et al.Efficient routing of single photons by one atom and a microtoroidal cavity.Phys Rev Lett,2009,102:083601–083604
    37 Peres A.Separability criterion for density matrices.Phys Rev Lett,1996,77:1413–1415
    38 Law C K,Walmsley I A,Eberly J H.Continuous frequency entanglement:effective finite Hilbert space and entropy control.Phys Rev Lett,2000,84:5304–5307
    39 Grice W P,U’ren A B,Walmsley I A.Eliminating frequency and space-time correlations in multiphoton states.Phys Rev A,2001,64:063815–063821
    40 Mosley P J,Lundeen J S,Smith B J,et al.Conditional preparation of single photons using parametric downconversion:a recipe for purity.New J Phys,2008,10:093011–093039
    41 Kielpinski D,Monroe C,Wineland D.Architecture for a large-scale ion-trap quantum computer.Nature,2002,417:709 –711
    42 Riebe M,Monz T,Kim K,et al.Deterministic entanglement swapping with an ion-trap quantum computer.Nature Phys,2008,4:839–842
    43 Home J P,Hanneke D,Jost J D,et al.Complete methods set for scalable ion trap quantum information processing.Science,2009,325:1227–1230
    44 Fan J,Dogariu A,Wang L J.Generation of correlated photon pairs in a microstructure fiber.Opt Lett,2005,30:1530–1532
    45 Fan J,Migdall A,Wang L J.Efficient generation of correlated photon pairs in a microstructure fiber.Opt Lett,2005,30 :3368–3370
    46 Fan J,Migdall A.Phase-sensitive four-wave mixing and Raman suppression in a microstructure fiber with dual laser pumps.Opt Lett,2006,31:2771–2773
    47 Harris S E.Chirp and compress:toward single-cycle biphotons.Phys Rev Lett,2007,98:063602–063605
    48 Harris S E.Electromagnetically induced transparency.Phys Today,1997,50:36–42
    49 Kolchin P,Du S,Belthangady C,et al.Generation of narrow-bandwidth paired photons:use of a single driving laser.Phys Rev Lett,2006,97:113602–113605
    50 Chen J F,Zhang S,Yan H,et al.Shaping biphoton temporal waveforms with modulated classical fields.Phys Rev Lett,2010,104:183604–183607
    51 Du S W,Wen J,Rubin M H,et al.Four-wave mixing and biphoton generation in a two-level system.Phys Rev Lett,2007,98:053601–053604
    52 Du S W,Oh E,Wen J,et al.Four-wave mixing in three-level systems:interference and entanglement.Phys Rev A,2007,76:013803–013806
    53 Du S W,Wen J,Rubin M H.Narrowband biphoton generation near atomic resonance.J Opt Soc Am B,2008,25:C98–C108
    54 Chen J F,Loy M,Wong G,et al.Optical precursors with finite rise and fall time.J Opt,2010,12:104010–104017
    55 Liu Y,Wu J H,Shi B S,et al.Realization of the two-dimensional magneto-optical trap with a high optical depth.Chin Phys Lett,2012,29:024205–024207
    56 Chen P,Qian J,Chen D Y,et al.Interference of a narrowband biphoton with double electromagnetically induced transparency in an n-type system.Chin Phys Lett,2012,29:044202–044205
    57 Duan L,Lukin M,Cirac J,et al.Long-distance quantum communication with atomic ensembles and linear optics.Nature,2001,414:413–418
    58 van der Wal,Eisaman M D,Andr’e A,et al.Atomic memory for correlated photon states.Science,2003,301:196–200
    59 Kuzmich A,Bowen W P,Boozer A D,et al.Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles.Nature,2003,423:731–734
    60 Balic V,Braje D A,Kolchin P,et al.Generation of paired photons with controllable waveforms.Phys Rev Lett,2005,94 :183601–183604
    61 Du S,Kolchin P,Belthangady C,et al.Subnatural linewidth biphotons with controllable temporal length.Phys Rev Lett,2008,100:183603–183606
    62 Lu X S,Chen Q F,Shi B S,et al.Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble.Chin Phys Lett,2009,26:064204–064206
    63 Chen P,Zhou S Y,Xu Z,et al.Narrowband biphoton generation with four-wave mixing in a far-detuning three-level system.Chin Phys Lett,2011,28:074214–074217
    64 Yan H,Zhang S,Chen J F,et al.Generation of narrow-band hyperentangled nondegenerate paired photons.Phys Rev Lett,2011,106:033601–033604
    65 Kolchin P,Belthangady C,Du S,et al.Electro-optic modulation of single photons.Phys Rev Lett,2008,101:103601–103604
    66 Du S,Wen J,Belthangady C.Temporally shaping biphoton wave packets with periodically modulated driving fields.Phys Rev A,2009,79:043811–043815
    67 Chen J F,Zhang S,Yan H,et al.Shaping biphoton temporal waveforms with modulated classical fields.Phys Rev Lett,2010,104:183604–183607
    68 Zhang S,Chen J F,Liu C,et al.Optical precursor of a single photon.Phys Rev Lett,2011,106:243602–243605
    69 Zhang S,Liu C,Zhou S Y,et al.Coherent control of single-photon absorption and reemission in a two-level atomic ensemble.Phys Rev Lett,2012,109:263601–263605
    70 Bennett C H,Brassard G.Quantum cryptography:public key distribution and coin tossing.In:Proceedings of IEEE International Conference on Computers,Systems,and Signal Processing,Bangalore,1984.175–179
    71 Inoue K,Waks E,Yamamoto Y.Differential phase shift quantum key distribution.Phys Rev Lett,2002,89:037902–037904
    72 Yan H,Zhu S L,Du S.Efficient phase-encoding quantum key generation with narrow-band single photons.Chin Phys Lett,2011,28:070307–070310
    73 Liu C,Zhang S C,Zhao L W,et al.Differential-phase-shift quantum key distribution using heralded narrow-band single photons.Opt Express,2013,21:9505–9513
    74 Fortagh J,Zimmermann C.Magnetic microtraps for ultracold atoms.Rev Mod Phys,2007,79:235–289
    75 Fekete J,Rielander D,Cristiani M,et al.Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks.Phys Rev Lett,2013,110:220502–220506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700