变温热处理过程的相场模拟及其参数标定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase-field Modeling of Heat Treatment Process with Variable Temperature and Its Parameter Calibration
  • 作者:王婵 ; 石磊 ; 石多奇 ; 杨晓光
  • 英文作者:Wang Chan;Shi Lei;Shi Duoqi;Yang Xiaoguang;School of Energy and Power Engineering, Beihang University;School of Engineering, University of Limerick;Beijing Key Laboratory of Aeroengine Structural Strength, Beihang University;
  • 关键词:航空发动机涡轮盘 ; 晶粒演化 ; 相场模型 ; Arrhenius关系 ; 晶界迁移率 ; 热处理
  • 英文关键词:aeroengine turbine disk;;grain evolution;;phase field model;;Arrhenius relationship;;grain boundary mobility;;heat treatment
  • 中文刊名:HKGC
  • 英文刊名:Advances in Aeronautical Science and Engineering
  • 机构:北京航空航天大学能源与动力工程学院;利莫瑞克大学工程学院;北京航空航天大学航空发动机结构强度北京市重点实验室;
  • 出版日期:2019-04-28
  • 出版单位:航空工程进展
  • 年:2019
  • 期:v.10;No.38
  • 基金:国家留学基金;; 北京航空航天大学博士研究生卓越学术基金
  • 语种:中文;
  • 页:HKGC201902017
  • 页数:8
  • CN:02
  • ISSN:61-1479/V
  • 分类号:113-120
摘要
航空发动机双性能涡轮盘热处理工艺的研究,大多采用试验的方法建立涡轮盘合金的热处理工艺数据库,但试验法的研究周期长、成本高,提出一种可用于预测变温热处理过程中晶粒演化行为的相场模型。为了模拟不同热处理温度下高温合金的晶粒演化行为,对相场模型进行改进,在相场模型中引入Arrhenius关系,用于描述高温合金晶界运动与温度的量化关系。基于改进的相场模型和拟合的模型参数,计算分析热处理过程中晶粒尺寸的变化和形貌演化规律。结果表明:计算数据与试验数据吻合,晶粒的演化规律与理论分析和试验观察结果一致,证明了拟合的Arrhenius关系中的晶界迁移速率M适用于模拟相应温度下的热处理过程,同时,以上结果也验证了该模型改进方法的可行性及其拟合参数的准确性。
        For the research of heat treatment technology of aero-engine turbine discs with dual-performance, the experimental methods are mostly used to establish the database of heat treatment technology of turbine disk alloys. However, the experimental methods have a long research period and high cost. A phase field model that can be used to predict the grain evolution during heat treatment process with variable temperature is proposed. To simulate the grain evolution of superalloy at different heat treatment temperatures, the phase field model is improved by introducing the Arrhenius relationship, which describes the quantitative relationship between the grain boundary movement and temperature. Based on the improved phase field model and fitted model parameters, the grain average size and morphology evolution of superalloy FGH96 during the longer heat treatment process are simulated, and the simulated results are compared with the experimental results. The results show that the calculated data coincide with the experiment data, the evolution law of grain is consistent with the experimental observation and theoretical analysis. These results prove that the grain boundary mobility M in the Arrhenius relationship is suitable for simulating the heat treatment process at the corresponding temperature. At the same time, the feasibility of the improved method and accuracy of the fitted parameters of the phase-field model are verified.
引文
[1] 张义文,刘建涛.粉末高温合金研究进展[J].中国材料进展,2013,32(1):1-11.Zhang Yiwen,Liu Jiantao.Development in powder metallurgy superalloy[J].Materials China,2013,32(1):1-11.(in Chinese)
    [2] 宁永权,李辉,姚泽坤,等.FGH96高温合金的再结晶组织特征[J].稀有金属材料与工程,2016,45(5):1225-1229.Ning Yongquan,Li hui,Yao Zekun,et al.Recrystallization characterization of FGH96 superalloy[J].Rare Metal Materials and Engineering,2016,45(5):1225-1229.(in Chinese)
    [3] Kazaryan A,Wang Y,Dregia S A,et al.Grain growth in systems with anisotropic mobility:analytical model and computer simulation[J].Physical Review B:Condensed Matter and Materials Physics,2001,63(18):145-155.
    [4] Kazaryan A,Wang Y,Dregia S A,et al.Grain growth in anisotropic systems:comparison of effects of energy and mobility[J].Acta Materialia,2002(50):2491-2502.
    [5] Krill C E,Chen L Q.Computer simulation of 3-D grain growth using a phase-field model[J].Acta Materialia,2002(50):3057-3073.
    [6] Ma N,Kazaryan A,Dregia S A,et al.Computer simulation of texture evolution during grain growth:effect of boundary properties and initial microstructure[J].Acta Materialia,2004(50):3869-3879.
    [7] Moelans N,Blanpain B,Wollants P.A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles[J].Acta Materialia,2005(53):1771-1781.
    [8] Moelans N,Blanpain B,Wollants P.Phase field simulation of grain growth in two-dimensional systems containing finely dispersed second-phase particles[J].Acta Materialia,2006(54):1175-1184.
    [9] Suwa Y,Saito Y,Onodera H.Phase field simulation of grain growth in three dimensional system containing finely dispersed second-phase particles[J].Scripta Materialia,2006(55):407-410.
    [10] 魏承炀,李赛毅.温度梯度对晶粒生长行为影响的相场模拟[J].物理学报,2011,60(10):132-139.Wei Chengyang,Li Saiyi.Effect of temperature gradient on grain growth behavior from phase field simulation[J].Acta Physica Sinica,2011,60(10):132-139.(in Chinese)
    [11] Loginova I,Amberg G.Phase-field simulations of non-isothermal binary alloy solidification[J].Acta materialia,2001(49):573-581.
    [12] Lan C W,Shih C J.Phase field simulation of non-isothermal free dendritic growth of a binary alloy in a forced flow[J].Journal of Crystal Growth,2004(264):472-482.
    [13] Wen Y H,Wang B,Simmons J P,et al.A phase-field model for heat treatment applications in Ni-based alloys[J].Acta Materialia,2006(54):2087-2099.
    [14] Ta N,Zhang L,Du Y.Design of the precipitation process for Ni-Al alloys with optimal mechanical properties:A phase-field study[J].Metallurgical and Materials Transactions A,2014,45(4):1787-1802.
    [15] Steinbach I.Phase-field models in materials science,Modelling and simulation in materials science and engineering[J].Modelling and Simulation in Materials Science and Engineering,2009,17(7):1-31.
    [16] Tegeler M,Shchyglo O,Darvishi K R,et al.Parallel multiphase field simulations with open phase[J].Computer Physics Communications,2017(215):173-187.
    [17] Shi L,Alexandratos S A,O’dowd N P.Combined finite element and phase field method for simulation of austenite grain growth in the heat-affected zone of a martensitic steel weld[J].Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials:Design and Applications,2019,233(1):13-27.
    [18] 中国航空材料手册编委会.中国航空材料手册[M].2版.Beijing:中国标准出版社,2002:46.China Aviation Material Handbook Editorial Board.China Aviation Material Handbook[M].2nd ed.Beijing:Standards Press of China,2002:46.(in Chinese)
    [19] 张莹,张义文,陶宇,等.FGH96粉末高温合金的组织演变[J].材料工程,2002(增刊):62-64.Zhang Ying,Zhang Yiwen,Tao Yu,et al.The Evolution of FGH96 powder superalloys[J].Journal of Materials Engineering,2002(S):62-64.(in Chinese)
    [20] 何胜春,廖云建,张田仓,等.粉末高温合金FGH96惯性摩擦焊接头室温疲劳裂纹扩展速率测试与分析[J].航空制造技术,2015,480(11):77-79.He Shengchun,Liao Yunjian,Zhang Tiancang,et al.Testing and analysis of rate of fatigue crack propagation of P/M superalloy FGH96 inertia friction welding joint[J].Aviation Manufacturing,2015,480(11):77-79.(in Chinese)
    [21] 刘建涛,刘国权,胡本芙,等.FGH96合金晶粒长大规律的研究[J].材料热处理学报,2004,25(6):25-29.Liu Jiantao,Liu Guoquan,Hu Benfu,et al.Study on grain growth of FGH96 alloy[J].Transactions of Materials and Heat Treatment,2004,25(6):25-29.(in Chinese)
    [22] 刘建涛,陈焕铭,胡本芙,等.新型粉末高温合金静态再结晶退火的试验研究[J].金属热处理,2004,29(6):37-40.Liu Jiantao,Chen Huanming,Hu Benfu,et al.Static recrystallization annealing of a new type P/M superalloy[J].Metal Heat Treatment,2004,29(6):37-40.(in Chinese)
    [23] Wang T,Wang X,Zhao Z,et al.Dissolution behaviour of the γ’ precipitates in two kinds of Ni-based superalloys[J].Materials at High Temperatures,2016,33(1):51-57.
    [24] 刘建涛,张义文,陶宇,等.FGH96合金锻造盘坯热处理过程中的晶粒长大行为[J].金属热处理,2006(6):40-44.Liu Jiantao,Zhang Yiwen,Tao Yu,et al.Grain growth behavior during heat treatment of FGH96 alloy forged disk[J].Metal Heat Treatment,2006(6):40-44.(in Chinese)
    [25] Liu C,Feng Liu,Huang L,et al.Effect of hot extrusion and heat treatment on microstructure of nickel-base superalloy[J].Transactions of Nonferrous Metals Society of China,2014,24(8):2544-2553.
    [26] 贾建,陶宇,张义文,等.热等静压温度对新型粉末冶金高温合金显微组织的影响[J].航空材料学报,2008,28(3):20-23.Jia Jian,Tao Yu,Zhang Yiwen,et al.Effects of HIP temperature on microstructures of a new P/M superalloy[J].Journal of Aeronautical Materials,2008,28(3):20-23.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700