玫瑰β-1,3-葡聚糖合成酶基因(RrCalS)克隆与生物信息学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning and Bioinformatics Analysis of Rosa Rugosa β-1,3-glucan Synthase Gene (RrCalS)
  • 作者:康希泉 ; 亓帅 ; 臧德奎 ; 郑林 ; 徐宗大 ; 邢树堂 ; 于晓艳
  • 英文作者:KANG Xiquan;QI Shuai;ZANG Dekui;ZHENG Lin;XU Zongda;XING Shutang;YU Xiaoyan;Shengda Garden Engineering Co.,Ltd.Shengli Oil field;Shandong Agricultural University;Qingzhou Flower Industry Administration;
  • 关键词:玫瑰 ; β-1 ; 3-葡聚糖合成酶 ; 基因克隆
  • 英文关键词:Rosa rugosa;;β-1,3-glucan synthase;;gene clone
  • 中文刊名:TREE
  • 英文刊名:Journal of Shandong Forestry Science and Technology
  • 机构:胜利油田胜大园林工程有限公司;山东农业大学;青州市花卉产业管理局;
  • 出版日期:2019-04-15
  • 出版单位:山东林业科技
  • 年:2019
  • 期:v.49;No.241
  • 基金:国家自然科学基金青年项目(31200524);国家自然科学基金面上项目(31870688)
  • 语种:中文;
  • 页:TREE201902003
  • 页数:5
  • CN:02
  • ISSN:37-1112/S
  • 分类号:12-15+26
摘要
为了探明胼胝质对玫瑰授粉亲和性的影响,本研究以‘唐红’玫瑰花柱为试材,采用RT-PCR和RACE方法获得了玫瑰β-1,3-葡聚糖合成酶基因的cDNA全长,命名为RrCalS。该基因全长5742 bp,开放阅读框5295 bp,编码1764个氨基酸。推导编码蛋白的分子量为204.7kD, PI值为9.00,在164-265位具有pfam14288结构域,在869-1642位具有pfam02364保守结构域,属于葡聚糖合成酶超家族;该蛋白属于疏水性、非分泌型蛋白,具有16个跨膜结构域,含有32个Ser磷酸化位点、21个Thr磷酸化位点、12个Tyr磷酸化位点;该蛋白的α-螺旋占49.49%,无规则卷曲占22.68%,β-转角占7.94%;该蛋白与Fragaria vesca等8种植物的Cals氨基酸序列同源性达73%以上,且它们的系统进化关系与传统分类结果一致。本研究为进一步深入研究玫瑰授粉不亲和机理,提高玫瑰育种理论和技术水平奠定了基础。
        In order to reveal which role the callose played in R. rugosa pollination incompatibility, the full-length cDNA sequence of β-1,3-glucan synthase gene was cloned for the first time from the stylus of Rosa rugosa "Tanghong" with RT-PCR and RACE methods and named as RrCalS. The full-length cDNA is 5742 bp with an open reading frame of 5295 bp, encoding 1764 amino acids. The derived protein has a molecular weight of 204.7 kD, a calculated pI of 9.00, a pfam14288 conserved domain at position164-265, a pfam02364 conserved domain at position 869-1642, and belongs to glucan synthase superfamily. The derived protein is a hydrophobic and nonsecretory protein. There are 16 transmem-brane domain, 32 Ser phosphorylation sites, 21 Thr phosphorylation sites, 12 Tyr phosphorylation sites. There are 49.49% α-helixes, 22.68% random coil, 7.94% β-corner struc-ture. This protein and the Cals protein from eight other species, including Prunus persica, share a sequence homology of greater than 73%. Furthermore,their phylogenetic relationships are consistent with their traditional classifications. These results were meaningful to reveal the molecular mechanism of R. rugosa pollination incompatibility and improve the theory of breeding ornamental R. rugosa.
引文
[1]冯立国,生利霞,赵兰勇,于晓艳,邵大伟,何小弟.玫瑰花发育过程中芳香成分及含量的变化[J].中国农业科学, 2008, 41(12):4341-4351.
    [2]文建雷,薛智德,胡景江.玫瑰的抗寒性与质膜透性[J].西北林学院学报,2000, 15(4):16-20.
    [3]杨志莹,赵兰勇,徐宗大.盐胁迫对玫瑰生长和生理特性的影响[J].应用生态学报,2011,22(8):1993-1998.
    [4]刘佳.玫瑰与现代月季杂交育种及杂交亲和性研究[D].北京:北京林业大学,2013.
    [5]王琼.月季与玫瑰杂交以及月季抗黑斑病的初步研究[D].北京:北京林业大学,2010.
    [6]于晓艳,邢树堂,赵兰勇.玫瑰与月季种间杂交障碍原因分析[J].中国农业科学,2014,47(15):3112-3120.
    [7]于晓艳,赵兰勇,丰震,齐海鹰,徐宗大,朱秀芹. 22份国产玫瑰资源的自交亲和性[J].中国农业科学,2009,42(9):3236-3242.
    [8]Kuboyama T, Takeda G. Genomic factors responsible for abnormal morphology of pollen tubes in the interspecific cross Nicotiana tabacum×N. Rustica[J]. Sexual Plant Reproduction, 2000, 12:333-337.
    [9]Williams E, Knox R B, Rouse J L. Pollination sub-Systems distinguished by pollen tube arrest after interspecific crosses in rhododendron(Ericaceae)[J]. Journal of Cell Science, 1982, 53:255-277.
    [10]Natalie K, Fritz R E, Hanneman J R. Interspecific incompatibility due to stylar barriers in tuber-bearing and closely related non-tuber-bearing solanums[J].Sexual Plant Reproduction, 1989, 2:184-192.
    [11]Ling T B, Mu X J. Actinidia arguta and Actinidia deliciosa interspecific hybridization of pollen tube behavior and earlyembryo genesis of observation[J]. Journal of Plant Science, 1995, 37:607-612.
    [12]Qiu J, Yang B J, Jiang L R. Observation of distant hybridization between rice and sorghum pollen behavior[J]. Molecular Plant Breeding, 2005, 3:835-840.
    [13]Li, X, Zhang S L, Tao S T. Differences in pollen germination in situ and pollen tube growth of Chinese cherry and sweet cherry[J]. Journal of Northwest Plants, 2007, 27:429-434.
    [14]Wang Y, Jiang C J, Zhang H Y. Observation of incompatibility of self pollen tube of tea tree in the style of living body[J]. Tea Science, 2008, 28:429-435.
    [15]Kauss H. Callose biosynthesis as a Ca2+-regulated process and possible relations to the induction of other metabolic changes[J]. Journal of Cell Science,1985, 2(2):89-94.
    [16]Levy A, Guenoune-Gelbar T D, Epel B L. Beta-1, 3-glucanases:plasmodesmal gate keepers for intercellular communication[J]. Plant Signaling&Behavior, 2007, 2(5):404-408.
    [17]Paul B, Katharina K, Alexander G, Marilyn P, Grant C,Kim F, Samuel C, Alison M. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis[J]. Plant Physiol, 2011,155:328-341.
    [18]Xie B,Wang X M,Hong Z L. Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis[J]. Planta, 2010, 231(4):809-814.
    [19]Wawrzynska A, Rodibaugh N L,Innes R W. Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase[J]. Molecular Plant microbe Interactions:MPMI, 2010, 23(5):578-584.
    [20]Song L, Wang R, Zhang L, Wang Y, Yao S. CRR1encoding callose synthase functions in ovary expansion by affecting vascular cell patterning in rice[J]. Plant Journal, 2016, 88(4):620-627.
    [21]Schneider R, Hanak T, Persson S, Voigt C A. Cellulose and callose synthesis and organization infocus,what’s new[J]. Current Opinion in Plant Biology,2016, 34:9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700