大叶藻居群微卫星遗传多样性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:GENETIC DIVERSITY IN POPULATIONS OF ZOSTER MARINA L. INFERRED FROM NUCLEAR SSR MARKERS
  • 作者:孙典荣 ; 李渊 ; 李文涛 ; 高天翔
  • 英文作者:SUN Dian-Rong1,LI Yuan2,LI Wen-Tao2and GAO Tian-Xiang2(1.South China Sea Fisheries Research Institute,Chinese Academy of Fishery Science,Guangzhou 510300,China;2.Institute of Evolution and Marine Biodiversity,Ocean University of China,Qingdao 266003,China)
  • 关键词:大叶藻 ; 居群 ; 微卫星 ; 遗传多样性 ; 遗传结构
  • 英文关键词:Zostera marina;Population;Microsatellite;Genetic diversity;Genetic structure
  • 中文刊名:SSWX
  • 英文刊名:Acta Hydrobiologica Sinica
  • 机构:中国水产科学研究院南海水产研究所;中国海洋大学海洋生物多样性与进化研究所;
  • 出版日期:2013-01-16 17:15
  • 出版单位:水生生物学报
  • 年:2013
  • 期:v.37
  • 基金:海洋公益性行业科研专项(201105005);; 国家自然科学基金(30700615)资助
  • 语种:中文;
  • 页:SSWX201301011
  • 页数:8
  • CN:01
  • ISSN:42-1230/Q
  • 分类号:84-91
摘要
采用4对微卫星引物对大叶藻的7个地理居群进行了遗传多样性与遗传结构分析。扩增148株大叶藻得到57个等位基因,每个位点平均等位基因数为6,大叶藻居群的平均期望杂合度(He)为0.687,平均观测杂合度(Ho)为0.417。青岛湾居群的遗传多样性最高(A=7.750,AR=7.043),俚岛居群最低(A=4.750,AR=4.543)。从Fst值来看,7个大叶藻居群间属于中度分化。UPGMA系统发育树显示,中国4个大叶藻居群聚类到一起,其遗传分化可能是由于历史大海草场的遗留小片段居群产生,而中国、韩国、日本和爱尔兰居群间的遗传分化则主要是由于地理隔离造成的。自由交配估计结果支持海草的东亚起源说。青岛湾居群遗传多样性较高,可优先作为大叶藻移植修复的材料和基因库,并进行重点保护。
        Seagrasses are angiosperms that are thought to have become adaptive to aquatic environment independently.The marine,monocotyledonous Zostera marina is a species of Zosteraceae using traditional classifications,which widely distributes from subtropical to subfrigid coastal oceans.Seven natural populations of Z.marina(Lidao,Tian’ehu,Qingdao Bay,Dalian,Naepo,Tokyo Bay and Finavarra) were used in this study.To study the mechanism of the genetic diversity and population structure of the seven populations,microsatellite marker(SSR) analysis was done.A total of 57 alleles were identified in 148 individuals across the four microsatellite primers analyzed,with a mean value of 6 alleles per locus.The mean expected heterozygosity(He) and observed heterozygosity(Ho) across all populations were 0.687 and 0.417,respectively,and a higher level of diversity was found in the population from the Qingdao Bay(A=7.750,AR=7.043) than other populations.The minimum Fst value was 0.051 between the populations from the Qingdao Bay and Dalian.The maximum Fst value was 0.261 between the populations from Tian’ehu and Finavarra.The Fst values suggested moderate genetic differentiation within most of the Z.marina populations.From the UPGMA tree,four populations in China(Lidao,Tian’ehu,Qingdao Bay and Dalian) clustered together,and the genetic relationships may be attributed to eelgrass meadow fragmentation.The geographic distance was responsible for the genetic differentiation from large-scale among populations in China(Lidao,Tian’ehu,Qingdao Bay and Dalian),Korea(Naepo),Japan(Tokyo Bay) and Ireland(Finavarra).Results of possible number of clusters supported that this seagrass species originated from East Asia.The population from the Qingdao Bay has higher genetic diversity,suggesting that populations in this region demand prioritized conservation and utilization for breeding programs.
引文
[1]den Hartog C.The Seagrasses of the World[M].Amsterdam:North Holland Publication Co.1970,1—275
    [2]Hemminga M,Duarte C.Seagrass Ecology[M].Cambridge:Cambridge University Press.2000,1—32
    [3]Olsen J L,Stam W T,Coyer J A,et al.North Atlantic phy-logeography and large-scale population differentiation of theseagrass Zostera marina L.[J].Molecular Ecology,2004,13(7):1923—1941
    [4]Orth R J,Luckenbach M,Marion S R,et al.Seagrass recov-ery in the Delmarva coastal bays,USA[J].Aquatic Botany,2006,84(1):26—36
    [5]Campanella J J,Bologna P A X,Smith S M,et al.Populationstructure of Zostera marina(eelgrass)on the western Atlan-tic coast is characterized by poor connectivity and inbreeding[J].Journal of Heredity,2010,101(1):61—70
    [6]Li W T,Zhang X M.The ecological functions of seagrassmeadows[J].Periodical of Ocean University of China,2009,39(5):933—939[李文涛,张秀梅.海草场的生态功能.中国海洋大学学报,2009,39(5):933—939]
    [7]Li Y,Li W T,Sun D R,et al.Phylogenetic relationships inzosteraceae based on matK and ITS nucleotide sequences[J].Acta Hydrobiologica Sinica,2011,35(6):900—907[李渊,李文涛,孙典荣,等.基于matK基因和ITS序列探讨大叶藻科的系统发育关系.水生生物学报,2011,35(6):900—907]
    [8]De Heij H,Nienhuis P H.Intraspecific variation in isozymepatterns of phenotypically separated populations of Zosteramarina L.in the south-western Netherlands[J].Journal ofExperimental Marine Biology and Ecology,1992,161(1):1—14
    [9]Williams S,Orth R J.Genetic diversity and structure ofnatural and transplanted eelgrass populations in the Chesa-peake and Chincoteague Bays[J].Estuaries,1998,21(1):118—128
    [10]Liu B Q,Zeng Q G,Wang Y J,et al.The cross-species am-plification and validation of EST-SSR loci in Porphyra hai-tanensis[J].Acta Hydrobiologica Sinica,2007,31(2):149—154
    [11]Reusch T B H.Microsatellites reveal high population con-nectivity in eelgrass(Zostera marina)in two contrastingcoastal areas[J].American Society of Limnology andOceanography,2002,47(1):78—85
    [12]Oetjen K,Ferber S,Dankert I,et al.New evidence for habi-tat-specific selection in Wadden Sea Zostera marina popula-tions revealed by genome scanning using SNP and microsa-tellite markers[J].Marine Biology,2010,157(1):81—89
    [13]Ban Y.Methods of DNA and RNA isolation of Oryza sativa[A].In:Shimamoto K,Sasaki T(Eds.),PCR ExperimentsProtocol of Plants[C].Tokyo:Shujunsha.1997,34—40
    [14]Reusch T B H,Stam W T,Olsen J L.Microsatellite loci ineelgrass Zostera marina reveal marked polymorphism withinand among populations[J].Molecular Ecology,1999,8(2):317—321
    [15]Reusch T B H.Five microsatellite loci in eelgrass Zosteramarina and a test of cross-species amplification in Z.noltiiand Z.japonica[J].Molecular Ecology,2000,9(3):365—378
    [16]Botstein D,White R L,Skolnick M,et al.Construction of agenetic linkage map in man using restriction fragment lengthpolymorphisms[J].American Journal of Human Genetics,1980,32(3):314—331
    [17]Falush D,Stephens M,Pritchard J.Inference of populationstructure from multilocus genotype data:linked loci and cor-related allele frequencies[J].Genetics,2003,164:1567—1587
    [18]Soltis P S,Soltis D E.Genetic variation in endemic andwidespread plant species examples from Saxifragaceae andPolystichum[J].Aliso,1991,13(1):215—223
    [19]Huenneke L F.Ecological implications of genetic variation inplant populations[A].In:Falk D A,Holsinger K E(Eds.),Genetics and Conservation of Rare Plants[C].New York:Oxford University Press.1991,31—44
    [20]Campanella J J,Bologna P A X,Smith S M,et al.Zosteramarina population genetics in Barnegat Bay,New Jersey,and implications for grass bed restoration[J].PopulationEcology,2010,52(1):181—190
    [21]Botstein D,White R L,Skolnick M,et al.Construction of agenetic linkage map in man using restriction fragment lengthpolymorphisms[J].American Journal of Human Genetics,1980,32(3):314—331
    [22]Laushman R H.Population genetics of hydrophilous angio-sperms[J].Aquatic Botany,1993,44(2):147—158
    [23]Palstra F P,Ruzzante D E.Genetic estimates of contempo-rary effective population size:what can they tell us about theimportance of genetic stochasticity for wild population per-sistence[J]Molecular Ecology,2008,17(15):3428—3447
    [24]Wright S.Evolution and the genetics of populations[A],Volume 4:Variability within and among Natural Populations[C].Chicago:University of Chicago Press.1978,65—134
    [25]Aioi K.A daybreak in the studies on Japanese Zostera beds(in Japanese with English abstract)[J].Aquabiology,2000,22(6):516—523
    [26]Tanaka N,Kuo J,Omori Y,et al.Phylogenetic relationshipsin the genera Zostera and Heterozostera(Zosteraceae)basedon matK sequence data[J].Journal of Plant Research,2003,116(4):273—279
    [27]Jones T C,Gemmill C E C,Pilditch C A.Genetic variabilityof New Zealand seagrass(Zostera muelleri)assessed at mul-tiple spatial scales[J].Aquatic Botany,2008,88(1):39—46
    [28]Rose C G,Paynter K T,Hare M P.Isolation by distance in theEastern oyster,Crassostrea virginica,in Chesapeake Bay[J].Journal of Heredity,2006,97(2):158—170
    [29]Liu J X,Gao T X,Yokogawa K,et al.Differential populationstructuring and demographic history of two closely relatedfish species,Japanese sea bass(Lateolabrax japonicus)andspotted sea bass(Lateolabrax maculatus)in NorthwesternPacific[J].Molecular Phylogenetics and Evolution,2006,39(3):799—811
    [30]Liu J X,Gao T X,Wu S F,et al.Pleistocene isolation in theNorthwestern Pacific marginal seas and limited dispersal in amarine fish,Chelon haematocheilus(Temminck&Schlegel,1845)[J].Molecular Ecology,2007,16(2):275—288
    [31]Palumbi S R,Grabowsky G,Duda T,et al.Speciation andpopulation genetic structure in tropical Pacific sea urchins[J].Evolution,1997,51(5):1506—1517
    [32]Hewitt G M.Some genetic consequences of ice ages,andtheir role in divergence and speciation[J].Biology Journal ofthe Linnean Society,1996,58(3):247—276
    [33]Widmer A,Lexer C.Glacial refugia:sanctuaries for allelicrichness,but not for gene diversity[J].Trends in Ecologyand Evolution,2001,16(6):267—269
    [34]Li C,Liu H,Huang R,et al.Identification of typeⅠmicrosatellite markers and their polymorphism in grass carp(Ctenopharyngodon idellus)[J].Acta Hydrobiologica Sinica,2011,35(4):681—688[李偲,刘航,黄容,等.草鱼Ⅰ型微卫星标记的发掘及其多态性检测.水生生物学报,2011,35(4):681—688]
    [35]McKay J K,Christian C E,Harrison S,et al.“How local islocal”-A review of practical and conceptual issues in thegenetics of restoration[J].Restoration Ecology,2005,13(3):432—440
    [36]Johannesson K,AndréC.Life on the margin:genetic isola-tion and diversity loss in a peripheral marine ecosystem,theBaltic Sea[J].Molecular Ecology,2006,15(8):2013—2029

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700