基于宏基因组学研究污水生物处理系统微生物暗物质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metagenomics research on microbial dark matter in biological wastewater treatment system
  • 作者:杨洋 ; 邢德峰
  • 英文作者:YANG Yang;XING Defeng;School of Environment,Harbin Institute of Technology;State Key Laboratory of Urban Water Resources and Environment ( Harbin Institute of Technology);
  • 关键词:污水生物处理 ; 宏基因组学 ; 宏转录组学 ; 生物脱氮 ; 强化生物除磷 ; 微生物电化学 ; 微生物暗物质
  • 英文关键词:biological wastewater treatment;;metagenomics;;metatranscriptomics;;biological nitrogen removal;;enhanced biological phosphorus removal;;microbial electrochemical system;;microbial dark matter
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:哈尔滨工业大学环境学院;城市水资源与水环境国家重点实验室(哈尔滨工业大学);
  • 出版日期:2018-12-18 09:16
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(31470233)
  • 语种:中文;
  • 页:HEBX201902028
  • 页数:10
  • CN:02
  • ISSN:23-1235/T
  • 分类号:197-206
摘要
活性污泥和微生物生物膜是污水生物处理系统的主要菌群存在形式,利用微生物的不同代谢途径可实现水中污染物的转化和降解.微生物群落结构直接影响污染物生物转化速度和末端产物的类型,而全面了解微生物群落结构和功能可为污水生物处理的定向调控提供微生物学依据.由于绝大多数微生物未获得纯培养,因此,揭示生物处理系统中的微生物暗物质成为重要的挑战.核酸测序技术和生物信息学的快速发展推动了环境微生物学和微生物生态研究.近年来,基于高通量核酸测序的宏组学技术为研究未培养微生物和未知基因资源提供了重要工具.宏基因组学和宏转录组学技术可以研究特定环境下未培养微生物的生理功能和代谢,揭示生态条件变化下微生物的环境适应和代谢调控机制.目前,基于宏组学研究微生物暗物质,已经获得了一些突破传统认识的物质循环新机理.本文回顾了核酸测序技术的发展,综述了近年宏基因组学和宏转录组学在污水生物脱氮、强化生物除磷及微生物电化学技术微生物学研究的进展,对多组学在污水处理微生物学研究的前景和面临的主要挑战进行分析.
        The activated sludge or microbial biofilm are the main habitats of microbial consortia in processes of biological wastewater treatment. The transformation and degradation of pollutants in wastewater can be realized through different metabolic pathways of microorganisms. The microbial community structure directly affects the rate of biotransformation of pollutants and the types of end products,while a comprehensive understanding of the microbial community structure and function can provide a microbiological basis for directional regulation of biological wastewater treatment. Since most of microorganisms are still uncultivable,it becomes a major challenge to reveal microbial dark matter in biological treatment systems. The rapid development of nucleic acid sequencing technique and bioinformatics has promoted the study of environmental microbiology and microbial ecology. In recent years,various meta-omics techniques based on high-throughput sequencing have served as an important tool for studying uncultured microorganisms and unknown genetic resources. Metagenomics and metatranscriptomics can systematically investigate the physiological and metabolic characteristics of microorganisms in specific environments,and provide a better understanding of microbial response and metabolic regulation to environmental variations.Currently,the meta-omics research on microbial dark matter has obtained some novel mechanisms in circulation of substances that break through the traditional understanding. This paper reviews the development of nucleic acid sequencing technique and discusses the recent advances in microbiological researches of biological nitrogen removal, enhanced biological phosphorus removal, and microbial electrochemical techniques based on metagenomics and metatranscriptomics. Finally,we provide an outlook on the prospective development and major challenge for meta-omics researches on biological wastewater treatment.
引文
[1]FAUST K,RAES J. Microbial interactions:From networks to models[J]. Nature Reviews Microbiology,2012,10(8):538. DOI:10.1038/nrmicro2832
    [2]WANG Z,ZHANG X,LU X,et al. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing[J]. PLo S One,2014,9(11):e113603. DOI:10.1371/journal. pone. 0113603
    [3]STROUS M,PELLETIER E,MANGENOT S,et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature,2006,440(7085):790. DOI:10. 1038/nature04647
    [4]SKENNERTON C T,BARR J J,SLATER F R,et al. Expanding our view of genomic diversity in Candidatus Accumulibacter clades[J]. Environmental Microbiology,2015,17(5):1574. DOI:10.1111/1462-2920. 12582
    [5]LIU Qian,REN Z J,HUANG Cong,et al. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells[J]. Biotechnology for Biofuels,2016,9:162. DOI:10. 1186/s13068-016-0579-x
    [6]MEI Xiaoxue,XING Defeng,YANG Yang,et al. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature[J]. Bioelectrochemistry,2017,117:29. DOI:10.1016/j. bioelechem. 2017. 04. 005
    [7]LIU Qian,LIU Bingfeng,LI Wei,et al. Impact of ferrous iron on microbial community of the biofilm in microbial fuel cells[J].Frontiers in Microbiology,2017,8:920. DOI:10. 3389/fmicb.2017. 00920
    [8]PARK H,ROSENTHAL A,JEZEK R,et al. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation(anammox)bioreactor communities[J]. Water Research,2010,44(17):5005. DOI:10. 1016/j. watres. 2010.07. 022
    [9] PETERSON S B, WARNECKE F, MADEJSKA J, et al.Environmental distribution and population biology of Candidatus Accumulibacter,a primary agent of biological phosphorus removal[J]. Environmental Microbiology,2008,10(10):2692. DOI:10.1111/j. 1462-2920. 2008. 01690. x
    [10] AMANN R I, LUDWIG W, SCHLEIFER K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation.[J]. Microbiological Reviews,1995,59(1):143
    [11]RINKE C,SCHWIENTEK P,SCZYRBA A,et al. Insights into the phylogeny and coding potential of microbial dark matter[J].Nature,2013,499(7459):431. DOI:10. 1038/nature12352
    [12]STEWART E J. Growing unculturable bacteria[J]. Journal of Bacteriology,2012,194(16):4151. DOI:10. 1128/JB. 00345-12
    [13]孙欣,高莹,杨云锋.环境微生物的宏基因组学研究新进展[J].生物多样性,2013,21(4):393SUN Xin,GAO Ying,YANG Yunfeng. Recent advancement in microbial environmental research using metagenomics tools[J].Biodiversity Science,2013,21(4):393. DOI:10. 3724/SP. J.1003. 2013. 08050
    [14]韩丽丽,吴娟,马燕天,等.环境微生物转录组学研究进展[J].基因组学与应用生物学,2017(12):5210HAN Lili,WU Juan,MA Yantian,et al. Advances in research on environmental microbial transcriptomics[J]. Genomics&Applied Biology,2017(12):5210. DOI:10. 13417/j. gab. 036. 005210
    [15]HANDELSMAN J,RONDON M R,BRADY S F,et al. Molecular biological access to the chemistry of unknown soil microbes:A new frontier for natural products[J]. Chemistry&Biology,1998,5(10):R245. DOI:10. 1016/S1074-5521(98)90108-9
    [16]ZHOU Jizhong,HE Zhili,YANG Yunfeng,et al. High-throughput metagenomic technologies for complex microbial community analysis:Open and closed formats[J]. MBio,2015,6(1):e2214. DOI:10. 1128/m Bio. 02288-14
    [17]PORETSKY R S,BANO N,BUCHAN A,et al. Analysis of microbial gene transcripts in environmental samples[J]. Applied and Environmental Microbiology,2005,71(7):4121. DOI:10.1128/AEM. 71. 7. 4121-4126. 2005
    [18]URICH T,LANZEN A,QI J,et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome[J]. PLo S One,2008,3(6):e2527.DOI:10. 1371/journal. pone. 0002527
    [19]RODRIGUEZ E,GARCIA-ENCINA P A,STAMS A J M,et al.Meta-omics approaches to understand and improve wastewater treatment systems[J]. Reviews in Environmental Science and BioTechnology,2015,14(3):385. DOI:10. 1007/s11157-015-9370-x
    [20]SANGER F,AIR G M,BARRELL B G,et al. Nucleotide sequence of bacteriophageφX174 DNA[J]. Nature,1977,265(5596):687. DOI:10. 1038/265687a0
    [21]FLEISCHMANN R D,ADAMS M D,WHITE O,et al. Wholegenome random sequencing and assembly of Haemophilus influenzae Rd.[J]. Science,1995,269(5223):496. DOI:10.1126/science. 7542800
    [22]COLLINS F S,MORGAN M,PATRINOS A. The human genome project:Lessons from large-scale biology[J]. Science,2003,300(5617):286. DOI:10. 1126/science. 1084564
    [23]MARGULIES M,EGHOLM M,ALTMAN W E,et al. Genome sequencing in microfabricated high-density picolitre reactors[J].Nature,2005,437(7057):376. DOI:10. 1038/nature03959
    [24]SHENDURE J,PORRECA G J,REPPAS N B,et al. Accurate multiplex polony sequencing of an evolved bacterial genome[J].Science,2005,309(5741):1728. DOI:10. 1126/science.1117389
    [25]BENTLEY D R,BALASUBRAMANIAN S,SWERDLOW H P,et al. Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature,2008,456(7218):53. DOI:10. 1038/nature07517
    [26]Di BELLA J M,BAO Y,GLOOR G B,et al. High throughput sequencing methods and analysis for microbiome research[J].Journal of Microbiological Methods,2013,95(3):401. DOI:10. 1016/j. mimet. 2013. 08. 011
    [27]EID J,FEHR A,GRAY J,et al. Real-time DNA sequencing from single polymerase molecules[J]. Science,2009,323(5910):133. DOI:10. 1126/science. 1162986
    [28]BRANTON D,DEAMER D W,MARZIALI A,et al. The potential and challenges of nanopore sequencing[J]. Nature Biotechnology,2008,26(10):1146. DOI:10. 1038/nbt. 1495
    [29]叶姜瑜,罗固源,吉芳英,等.污水生物处理功能微生物的多样性[J].重庆大学学报(自然科学版),2005,28(10):119YE Jiangyu, LUO Guyuan, JI Fangying, et al. Functional microbial diversities in wastewater biological treatment[J]. Journal of Chongqing University(Natural Science Edition),2005,28(10):119
    [30]SANGWAN N,XIA F,GILBERT J A. Recovering complete and draft population genomes from metagenome datasets[J].Microbiome,2016,4:8. DOI:10. 1186/s40168-016-0154-5
    [31]YU K,ZHANG T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge[J]. PLo S One,2012,7(5):e38183. DOI:10. 1371/journal. pone. 0038183
    [32]ISHII S,SUZUKI S,NORDEN-KRICHMAR T M,et al. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer[J]. Nature Communications,2013,4:1601. DOI:10. 1038/ncomms2615
    [33]HE S,KUNIN V,HAYNES M,et al. Metatranscriptomic array analysis of ‘Candidatus Accumulibacter phosphatis’-enriched enhanced biological phosphorus removal sludge[J].Environmental Microbiology,2010,12(5):1205. DOI:10.1111/j. 1462-2920. 2010. 02163. x
    [34]KUYPERS M M M,MARCHANT H K,KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263. DOI:10. 1038/nrmicro. 2018. 9
    [35] TIAN Mei, ZHAO Fangqing, SHEN Xin, et al. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic(A2O)nitrogen and phosphorus removal reactor using Illumina sequencing[J]. Journal of Environmental Sciences,2015,35:181. DOI:10. 1016/j. jes. 2014. 12. 027
    [36]YE Lin,ZHANG Tong,WANG Taitao,et al. Microbial structures,functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing[J].Environmental Science&Technology,2012,46(24):13244.DOI:10. 1021/es303454k
    [37]MIAO Yu,LIAO Runhua,ZHANG Xuxiang,et al. Metagenomic insights into Cr(VI)effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research,2015,76:43. DOI:10. 1016/j. watres. 2015. 02. 042
    [38]MIAO Yu,LIAO Runhua,ZHANG Xuxiang,et al. Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Chemical Engineering Journal,2015,277:116. DOI:10. 1016/j. cej. 2015. 04. 125
    [39]HU Z,SPETH D R,FRANCOIJS K,et al. Metagenome analysis of a complex community reveals the metabolic blueprint of anannmox bacterium “Candidatus Jettenia asiatica”[J]. Frontiers in Microbiology,2012,3:366. DOI:10. 3389/fmicb. 2012. 00366
    [40]TANG Xi,GUO Yongzhao, JIANG Bo, et al. Metagenomic approaches to understanding bacterial communication during the anammox reactor start-up[J]. Water Research,2018,136:95.DOI:10. 1016/j. watres. 2018. 02. 054
    [41]SPETH D R,IN T ZANDT M H,GUERRERO-CRUZ S,et al.Genome-based microbial ecology of anammox granules in a fullscale wastewater treatment system[J]. Nature Communications,2016,7:11172. DOI:10. 1038/ncomms11172
    [42]GUO Jianhua,PENG Yongzhen,FAN Lu,et al. Metagenomic analysis of anammox communities in three different microbial aggregates[J]. Environmental Microbiology,2016,18(9):2979. DOI:10. 1111/1462-2920. 13132
    [43]BHATTACHARJEE A S,WU S,LAWSON C E,et al. Wholecommunity metagenomics in two different anammox configurations:Process performance and community structure[J]. Environmental Science&Technology,2017,51(8):4317. DOI:10. 1021/acs.est. 6b05855
    [44]LAWSON C E,WU S,BHATTACHARJEE A S,et al. Metabolic network analysis reveals microbial community interactions in anammox granules[J]. Nature Communications, 2017, 8:15416. DOI:10. 1038/ncomms15416
    [45]GONZALEZ-MARTINEZ A, MARGARETO A, RODRIGUEZSANCHEZ A,et al. Linking the effect of antibiotics on partialnitritation biofilters:Performance, microbial communities and microbial activities[J]. Frontiers in Microbiology,2018,9:354.DOI:10. 3389/fmicb. 2018. 00354
    [46]SALES C M,LEE P K H. Resource recovery from wastewater:Application of meta-omics to phosphorus and carbon management[J]. Current Opinion in Biotechnology,2015,33:260. DOI:10. 1016/j. copbio. 2015. 03. 003
    [47]MARTIN H G,IVANOVA N,KUNIN V,et al. Metagenomic analysis of two enhanced biological phosphorus removal(EBPR)sludge communities[J]. Nature Biotechnology,2006,24(10):1263. DOI:10. 1038/nbt1247
    [48]HE S,GALL D L,MCMAHON K D.“Candidatus accumulibacter”population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes[J]. Applied and Environmental Microbiology,2007,73(18):5865. DOI:10. 1128/AEM. 01207-07
    [49]HESSELMANN R,WERLEN C,HAHN D,et al. Enrichment,phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J].Systematic and Applied Microbiology,1999,22(3):454. DOI:10. 1016/S0723-2020(99)80055-1
    [50]FLOWERS J J,HE S,MALFATTI S,et al. Comparative genomics of two‘Candidatus Accumulibacter’clades performing biological phosphorus removal[J]. ISME Journal,2013,7(12):2301.DOI:10. 1038/ismej. 2013. 117
    [51]OEHMEN A,LEMOS P C,CARVALHO G,et al. Advances in enhanced biological phosphorus removal:From micro to macro scale[J]. Water Research,2007,41(11):2271. DOI:10.1016/j. watres. 2007. 02. 030
    [52]MCILROY S J,ALBERTSEN M, ANDRESEN E K, et al.‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity[J]. ISME Journal,2014,8(3):613. DOI:10. 1038/ismej. 2013. 162
    [53]ALBERTSEN M,MCILROY S J,STOKHOLM-BJERREGAARD M,et al.“Candidatus Propionivibrio aalborgensis”:A novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants[J]. Frontiers in Microbiology,2016,7:1033. DOI:10. 3389/fmicb. 2016. 01033
    [54]ALBERTSEN M,HANSEN L B S,SAUNDERS A M,et al. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal[J]. ISME Journal,2012,6(6):1094. DOI:10. 1038/ismej. 2011. 176
    [55]COKRO A A,LAW Y,WILLIAMS R B H,et al. Non-denitrifying polyphosphate accumulating organisms obviate requirement for anaerobic condition[J]. Water Research,2017,111:393. DOI:10. 1016/j. watres. 2017. 01. 006
    [56]MAO Y,YU K,XIA Y,et al. Genome reconstruction and gene expression of “Candidatus Accumulibacter phosphatis”Clade IB performing biological phosphorus removal[J]. Environmental Science&Technology,2014,48(17):10363. DOI:10. 1021/es502642b
    [57]OYSERMAN B O,NOGUERA D R,DEL RIO T G,et al.Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis[J]. ISME Journal,2016,10(4):810. DOI:10. 1038/ismej. 2015. 155
    [58]LOPEZ-VAZQUEZ C M,OEHMEN A,HOOIJMANS C M,et al.Modeling the PAO-GAO competition:Effects of carbon source,pH and temperature[J]. Water Research,2009,43(2):450. DOI:10. 1016/j. watres. 2008. 10. 032
    [59]LAW Y,KIRKEGAARD R H,COKRO A A,et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions[J]. Scientific Reports,2016,6:25719. DOI:10. 1038/srep25719
    [60]MEI Xiaoxue,GUO Changhong,LIU Bingfeng,et al. Shaping of bacterial community structure in microbial fuel cells by different inocula[J]. RSC Advances,2015,5(95):78136. DOI:10.1039/c5ra16382j
    [61]ISHII S,SUZUKI S,NORDEN-KRICHMAR T M,et al. Microbial population and functional dynamics associated with surface potential and carbon metabolism[J]. ISME Journal,2014,8(5):963. DOI:10. 1038/ismej. 2013. 217
    [62]KISELEVA L,GARUSHYANTS S K,MA H,et al. Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters[J]. Journal of Integrative Bioinformatics,2015,12(3):273. DOI:10. 2390/biecoll-jib-2015-273
    [63]ZHANG Husen,CHEN Xi,BRAITHWAITE D,et al. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells[J]. PLo S One,2014,9(9):e107460. DOI:10. 1371/journal. pone. 0107460
    [64]KOUZUMA A,KASAI T,NAKAGAWA G,et al. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells[J]. PLo S One,2013,8(11):e77443. DOI:10. 1371/journal. pone. 0077443
    [65]YAMAMURO A,KOUZUMA A,ABE T,et al. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells[J]. PLo S One,2014, 9(5):e98425. DOI:10. 1371/journal. pone.0098425
    [66]MARSHALL C W,ROSS D E,HANDLEY K M,et al. Metabolic reconstruction and modeling microbial electrosynthesis[J].Scientific Reports,2017,7:8391. DOI:10. 1038/s41598-017-08877-z
    [67]ROSS D E,MARSHALL C W,MAY H D,et al. Draft genome sequence of Sulfurospirillum sp. strain MES,reconstructed from the metagenome of a microbial electrosynthesis system[J].Genome Announcements,2015,3(1). DOI:10. 1128/genome A.01336-14
    [68]WANG Z,LEARY D H,MALANOSKI A P,et al. A previously uncharacterized,nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode[J]. Applied and Environmental Microbiology,2015,81(2):699. DOI:10. 1128/AEM. 02947-14
    [69]EDDIE B J,WANG Z,MALANOSKI A P,et al.‘Candidatus Tenderia electrophaga’,an uncultivated electroautotroph from a biocathode enrichment[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(6):2178. DOI:10. 1099/ijsem. 0. 001006
    [70]MALANOSKI A P,LIN B,EDDIE B J,et al. Relative abundance of “Candidatus Tenderia electrophaga” is linked to cathodic current in an aerobic biocathode community[J]. Microbial Biotechnology,2018,11(1):98. DOI:10. 1111/1751-7915.12757
    [71]ISHII S,SUZUKI S,TENNEY A,et al. Microbial metabolic networks in a complex electrogenic biofilm recovered from a stimulus-induced metatranscriptomics approach[J]. Scientific Reports,2015,5:14840. DOI:10. 1038/srep14840
    [72]TREMBLAY P,ZHANG T. Electrifying microbes for the production of chemicals[J]. Frontiers in Microbiology,2015,6:201. DOI:10. 3389/fmicb. 2015. 00201
    [73]EDDIE B J,WANG Z,HERVEY W J,et al. Metatranscriptomics supports the mechanism for biocathode electroautotrophy by“Candidatus Tenderia electrophaga”[J]. MSystems,2017,2(2):e2. DOI:10. 1128/m Systems. 00002-17
    [74]COSTEA P I,ZELLER G,SUNAGAWA S,et al. Towards standards for human fecal sample processing in metagenomic studies[J]. Nature Biotechnology,2017,35(11):1069. DOI:10. 1038/nbt. 3960

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700