钢管混凝土拱桥稳定极限承载力的线弹性迭代方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Linear Elastic Iteration Method for Ultimate Stability Bearing Capacity of Concrete Filled Steel Tubular Arch Bridge
  • 作者:解威威 ; 叶志权 ; 杨绿峰
  • 英文作者:XIE Weiwei;YE Zhiquan;YANG Lufeng;School of Civil Engineering and Architecture,Guangxi University;Key Laboratory of Engineering Disaster Prevention and Structural Safety of the Ministry of Education,Guangxi University;
  • 关键词:钢管混凝土拱桥 ; 极限承载力 ; 稳定系数 ; 齐次广义屈服函数 ; 弹性模量缩减法
  • 英文关键词:Concrete filled steel tubular arch bridge;;Ultimate bearing capacity;;Stability coefficient;;Homogeneous generalized yield function;;Elastic modulus reduction method
  • 中文刊名:ZGTK
  • 英文刊名:China Railway Science
  • 机构:广西大学土木建筑工程学院;广西大学教育部工程防灾与结构安全重点实验室;
  • 出版日期:2018-01-15
  • 出版单位:中国铁道科学
  • 年:2018
  • 期:v.39;No.158
  • 基金:国家自然科学基金资助项目(51478125);; 广西研究生教育创新计划资助项目(YCBZ2017024)
  • 语种:中文;
  • 页:ZGTK201801008
  • 页数:10
  • CN:01
  • ISSN:11-2480/U
  • 分类号:41-50
摘要
利用单一组合材料线弹性梁单元建立钢管混凝土拱桥稳定极限承载力计算的有限元分析模型,并以压弯稳定承载力相关方程为基础,通过全面试验法和回归分析方法建立具有广泛适用性的钢管混凝土构件压弯稳定分析的齐次广义屈服函数。结合弹性模量缩减法,研究用于钢管混凝土拱桥稳定极限承载力计算的线弹性迭代方法。通过与试验结果及不同数值方法计算结果的对比分析表明:建立的齐次广义屈服函数能够克服传统广义屈服函数容易受荷载初始值影响的缺陷;通过弹性模量缩减法调整弹性模量实现结构内力重分布,利用线弹性迭代方法计算结构的极限承载力,克服了增量非线性有限元法的局限性,能够取得更高的计算精度和效率;钢管混凝土拱桥规范建议的稳定系数表达式具有良好的稳定性与适用性。
        The finite element model for calculating the ultimate stability bearing capacity of the concretefilled steel tube(CFST)arch bridge was established using linear elastic beam element characterized by single composite material property.Based on the correlation equations of stability bearing capacity for CFST members under compression and bending,a widely applicable Homogeneous Generalized Yield Function(HGYF)was derived by means of comprehensive test method and regression analysis method.Then a linear elastic iteration method was proposed for determining the ultimate stability bearing capacity of the CFST arch bridge by means of elastic modulus reduction method.Comparisons between the results of the proposed method and those from experiments and different numerical methods show that the proposed HGYF can overcome the drawbacks of the traditional generalized yield function whose results vary with initial load.The elastic modulus can be adjusted by means of elastic modulus reduction method to realize the redistribution of structural internal force.The ultimate bearing capacity of the structure can be calculated by means of linear elastic iteration method.The limitations of incremental nonlinear finite element method are overcome,and higher calculation precision and efficiency can be obtained.The stability coefficient expression suggested in the code of CFST arch bridge has good stability and applicability.
引文
[1]徐勇,马庭林,陈克坚.水柏铁路北盘江大桥钢管混凝土拱设计[J].中国铁道科学,2003,24(5):35-40.(XU Yong,MA Tinglin,CHEN Kejian.Steel Tube with Concrete Filling Arch Design of Beipanjiang Large Bridge[J].China Railway Science,2003,24(5):35-40.in Chinese)
    [2]陈宝春.钢管混凝土拱桥[M].北京:人民交通出版社,2007:135,719-757.
    [3]LIU C Y,WANG Y Y,WU X R,et al.In-Plane Stability of Fixed Concrete-Filled Steel Tubular Parabolic Arches under Combined Bending and Compression[J].Journal of Bridge Engineering,2016,22(2):4016116.
    [4]韦建刚,陈宝春,吴庆雄.钢管混凝土压弯拱非线性临界荷载计算的等效梁柱法[J].工程力学,2010,27(10):104-109.(WEI Jiangang,CHEN Baochun,WU Qingxiong.Equivalent Beam-Column Method to Calculate Nonlinear Critical Load for CFST Arch under Compression and Bending[J].Engineering Mechanics,2010,27(10):104-109.in Chinese)
    [5]WU X R,LIU C Y,WANG W,et al.In-Plane Strength and Design of Fixed Concrete-Filled Steel Tubular Parabolic Arches[J].Journal of Bridge Engineering,2015,20(12):4015016.
    [6]邓继华,周福霖,谭平.圆钢管混凝土拱空间极限荷载计算方法研究[J].建筑结构学报,2014,35(11):28-35.(DENG Jihua,ZHOU Fulin,TAN Ping.Study on Method for Calculating Spatial Ultimate Load of Circular CFST Arch[J].Journal of Building Structures,2014,35(11):28-35.in Chinese)
    [7]丁发兴,余志武,蒋丽忠.圆钢管混凝土结构非线性有限元分析[J].建筑结构学报,2006,27(4):110-115.(DING Faxing,YU Zhiwu,JIANG Lizhong.Nonlinear Finite Element Analysis of Concrete Filled Circular Steel Tubular Structures[J].Journal of Building Structures,2006,27(4):110-115.in Chinese)
    [8]钟善桐.钢管混凝土统一理论:研究与应用[M].北京:清华大学出版社,2006:99-101.
    [9]SESHADRI R,HOSSAIN M M.Simplified Limit Load Determination Using the Mα-Tangent Method[J].Journal of Pressure Vessel Technology,2009,131(2):021213.
    [10]MACKENZIE D,BOYLE J T.Elastic Compensation Method for Limit and Shakedown Analysis:a Review[J].Journal of Strain Analysis for Engineering Design,2000,35(3):171-188.
    [11]YANG L F,YU B,JU J W.Incorporated Strength Capacity Technique for Limit Load Evaluation of Trusses and Framed Structures under Constant Loading[J].Journal of Structural Engineering,2015,141(11):4015023.
    [12]YANG LF,LI Q,ZHANG W,et al.Homogeneous Generalized Yield Criterion Based Elastic Modulus Reduction Method for Limit Analysis of Thin-Walled Structures with Angle Steel[J].Thin-Walled Structures,2014,80(9):153-158.
    [13]HAMILTON R,BOYLE J.Simplified Lower Bound Limit Analysis of Transversely Loaded Thin Plates Using Generalised Yield Criteria[J].Thin-Walled Structures,2002,40(6):503-522.
    [14]钟善桐.钢管混凝土结构[M].哈尔滨:科学技术出版社,1994:281-284.(ZHONG Shantong.Concrete Filled Steel Tubelar Structures[M].Harbin:Heilongjiang Science and Technology Press,1994:281-284.in Chinese)
    [15]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003:74-75,152-153.(CAI Shaohuai.Modern Steel Tube Confined Concrete Structures[M].Beijing:China Communications Press,2003:74-75,152-153.in Chinese)
    [16]LEE S H,UY B,KIM SH,et al.Behavior of High-Strength Circular Concrete-Filled Steel Tubular(CFST)Column under Eccentric Loading[J].Journal of Constructional Steel Research,2011,67(1):1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700