预处理工艺对生物质成型燃料理化特性的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Pretreatment Processes on the Physical and Combustion Properties of Briquette Prepared From Biomass Waste
  • 作者:曹忠耀 ; 张守玉 ; 吴顺延 ; 王才威 ; 黄小河 ; 宋晓冰 ; 吕俊复
  • 英文作者:CAO Zhongyao;ZHANG Shouyu;WU Shunyan;WANG Caiwei;HUANG Xiaohe;SONG Xiaobing;LYU Junfu;School of Energy and Power Engineering, University of Shanghai for Science and Technology;China National Electric Engineering Co.,LTD;Department of Energy and Power Engineering, Tsinghua University;
  • 关键词:棉杆 ; 木屑 ; 水热 ; 低温热解 ; 表观密度 ; 抗压强度 ; 燃烧特性
  • 英文关键词:cotton stalk;;wood sawdust;;hydrothermal treatment;;dry torrefaction treatment;;bulk density;;compressive strength;;combustion characteristics
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:上海理工大学能源与动力工程学院;中国电力工程有限公司;清华大学热能工程系;
  • 出版日期:2019-06-05
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.622
  • 基金:国家重点研发计划(2016YFB0600203);; 上海理工大学科技发展项目(16KJFZ094)~~
  • 语种:中文;
  • 页:ZGDC201911020
  • 页数:8
  • CN:11
  • ISSN:11-2107/TM
  • 分类号:203-210
摘要
棉杆(CS)和木屑(WS)经水热预处理(HT)和低温热解预处理(DT)后在同一条件下压制成生物质成型燃料,分析生物质成型燃料的物理性质(表观密度、抗压强度)和燃烧特性(热值、着火温度、燃尽温度和综合燃烧特性指数),考察HT和DT对不同种类生物质成型燃料理化特性的影响规律。结果表明:与未预处理的棉杆与木屑成型燃料相比,低温热解预处理后的两种生物质成型燃料的表观密度和抗压强度分别降低了0.03%~16.7%、23.2%~61.0%,200℃与230℃水热处理后的两种生物质成型燃料的表观密度和抗压强度则分别增加了9.5%~27.3%、114.0%~241.3%,而且,水热处理后的生物质成型燃料的热值增加了5.1%~59.0%。与未预处理生物质成型燃料相比,低温热解后的两种生物质成型燃料的燃烧特性基本不变,而200℃与230℃水热处理后的两种生物质成型燃料的最大燃烧速率显著增大。230℃水热处理后的生物质成型燃料热值为20.23~21.33MJ/kg,最大燃烧速率为9.06~9.49%·min~(-1),综合燃烧特性指数为4.94~5.56min~2℃~3,表观密度和抗压强度分别为1152.5~1154.3kg/m~3和3.4~3.5MPa,具有高热值及优燃烧性能,且物理性能佳,适合作为生活、工业锅炉燃料使用。
        The biomass wastes, cotton stalk(CS) and wood sawdust(WS), were pretreated by two different processes(dry torrefaction(DT) and hydrothermal treatment(HT)) and then densified to prepare biomass briquettes(B). The physical properties and combustion characteristics of the resulted biomass briquettes were investigated. The results indicate that the bulk density and the compressive strength of the briquettes prepared from the dry-torrefied biomasses were reduced by0.03~16.7% and 23.2~61.0% respectively compared with the unpretreated briquettes. On the contrary, the bulk density and the compressive strength of the briquettes prepared from the biomasses hydrothermally pretreated at 230℃ and 200℃increased by 9.5 to 27.3% and 114.0 to 241.3%, respectively.Moreover, the calorific value of the briquettes prepared after the hydrothermal process increased by 5.1~59.0%. Compared with the untreated biomass briquettes, the combustion characteristics of the dry-torrefied biomass briquettes changed a little, while the maximum burning rates of the briquettes prepared from the biomasses hydrothermally pretreated at200℃ and 230℃ significantly increased. The calorific value of the briquettes prepared from hydrothermally pretreated at230 oC is 20.23~21.33 MJ/kg, while the maximum burning rate is 9.06~9.49%·min~(-1), the comprehensive combustion characteristic index is 4.94~5.56 min~2℃~3, the bulk density is1152.5~1154.3 kg/m~3 and the compressive strength is 3.4~3.5 MPa respectively. In the research, the briquettes prepared from the biomasses hydrothermally pretreated at 230℃ are suitable for the use as domestic and industrial fuel because of the high heating value and the best combustion properties and physical properties.
引文
[1]杨正虎,袁益超,刘聿拯,等.生物质能系统研究及发展[J].上海理工大学学报,2004,26(1):35-41.Yang Zhenghu,Yuan Yichao,Liu Yuzheng,et al.Development and research on the biomass energy system[J].Journal of University of Shanghai For Science and Technology,2004,26(1):35-41(in Chinese).
    [2]Xia Xianfei,Sun Yu,Wu Kai,et al.Optimization of a straw ring-die briquetting process combined analytic hierarchy process and grey correlation analysis method[J].Fuel Processing Technology,2016,152:303-309.
    [3]Seidl P R,Goulart A K.Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts[J].Current Opinion in Green and Sustainable Chemistry,2016,2:48-53.
    [4]Kambo H S,Dutta A.Strength,storage,and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization[J].Applied Energy,2014,135:182-191.
    [5]Bilgic E,Yaman S,Haykiri-Acma H,et al.Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?[J].Bioresource Technology,2016,200:201-207.
    [6]Bai Xiaopeng,Wang Guanghui,Gong Chunxiao,et al.Co-pelletizing characteristics of torrefied wheat straw with peanut shell[J].Bioresource Technology,2017,233:373-381.
    [7]Xu Xiwei,Jiang Enchen,Lan Xiang.Influence of pre-treatment on torrefaction of Phyllostachys edulis[J].Bioresource Technology,2017,239:97-104.
    [8]Shang Lei,Nielsen N P K,Dahl J,et al.Quality effects caused by torrefaction of pellets made from Scots pine[J].Fuel Processing Technology,2012,101:23-28.
    [9]Faizal H M,Shamsuddin H S,Heiree M H M,et al.Torrefaction of densified mesocarp fibre and palm kernel shell[J].Renewable Energy,2018,122:419-428.
    [10]Stirling R J,Snape C E,Meredith W.The impact of hydrothermal carbonisation on the char reactivity of biomass[J].Fuel Processing Technology,2018,177:152-158.
    [11]Wu Qiong,Yu Shitao,Hao Najia,et al.Characterization of products from hydrothermal carbonization of pine[J].Bioresource Technology,2017,244:78-83.
    [12]Gao Pin,Zhou Yiyuan,Meng Fang,et al.Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization[J].Energy,2016,97:238-245.
    [13]Lynam J G,Coronella C J,Yan Wei,et al.Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass[J].Bioresource Technology,2011,102(10):6192-6199.
    [14]Yang Wei,Shimanouchi T,Kimura Y.Characterization of the residue and liquid products produced from husks of nuts from Caryacathayensis Sarg by hydrothermal carbonization[J].ACS Sustainable Chemistry&Engineering,2015,3(4):591-598.
    [15]Bobleter O.Hydrothermal degradation of polymers derived from plants[J].Progress in Polymer Science,1994,19(5):797-841.
    [16]Libra J A,Ro K S,Kammann C,et al.Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry,processes and applications of wet and dry pyrolysis[J].Biofuels,2011,2(1):71-106.
    [17]Reza M T,Uddin M H,Lynam J G,et al.Engineered pellets from dry torrefied and HTC biochar blends[J].Biomass&Bioenergy,2014,63:229-238.
    [18]Peterson A A,Vogel F,Lachance R P,et al.Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J].Energy&Environmental Science,2008,1(1):32-65.
    [19]Demirba?A.Mechanisms of liquefaction and pyrolysis reactions of biomass[J].Energy Conversion&Management,2000,41(6):633-646.
    [20]Chen Shoufeng,Mowery R A,Scarlata C J,et al.Compositional analysis of water-soluble materials in corn stover[J].Journal of Agricultural&Food Chemistry,2007,55(15):5912-5918.
    [21]Reza M T,Lynam J G,Vasquez V R,et al.Pelletization of biochar from hydrothermally carbonized wood[J].Environmental Progress&Sustainable Energy,2012,31(2):225-234.
    [22]Liu Zhengang,Zhang Fushen,Wu Jianzhi.Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J].Fuel,2010,89(2):510-514.
    [23]Liu Zhengang,Zhang Fushen.Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks[J].Energy Conversion&Management,2008,49(12):3498-3504.
    [24]Demirba?A.Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil[J].Energy,1999,24(2):141-150.
    [25]Peng Xiaowei,Ma Xiaoqian,Xu Zhibin.Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge[J].Bioresource Technology,2015,180:288-295.
    [26]Zhang Shouyu,Hong Ruoyu,Cao Jingpei,et al.Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char[J].Bioresource Technology,2009,100(18):4278-4283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700