并联踝康复机器人的设计与运动性能评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Kinematic Performance Evaluation of Parallel Ankle Rehabilitation Robot
  • 作者:李剑锋 ; 张凯 ; 张雷雨 ; 张子康 ; 左世平
  • 英文作者:LI Jianfeng;ZHANG Kai;ZHANG Leiyu;ZHANG Zikang;ZUO Shiping;College of Mechanical and Electrical Engineering, Beijing University of Technology;
  • 关键词:并联机构 ; 踝康复机器人 ; 工作空间 ; 运动学性能 ; 灵活性
  • 英文关键词:parallel mechanism;;ankle rehabilitation robot;;workspace;;kinematic performance;;dexterity
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:北京工业大学机械工程与应用电子技术学院;
  • 出版日期:2019-03-30 18:36
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51675008,51705007);; 北京市自然科学基金(3171001,17L20019);; 北京市教委科技计划(KM201810005015);; 中国博士后基金特别资助(2018T110017);; 北京市博士后基金(2017-ZZ-038)资助项目
  • 语种:中文;
  • 页:JXXB201909004
  • 页数:11
  • CN:09
  • ISSN:11-2187/TH
  • 分类号:42-52
摘要
对于足下垂和马蹄足内/外翻患者,均需对踝关节进行大量、重复性的康复训练,踝康复机器人是弥补人工康复训练不足、降低医师工作强度的关键设备。将踝关节的解剖结构及运动特性考虑在内,提出并研制■型并联踝康复机器人样机,可保证人-机转动中心近似重合。同时,搭建了作用力/矩信息采集平台,实现踝关节的被动、主动及人机交互训练,提高了机器人、患者及医师之间的交互能力。建立了踝康复机器人的运动学模型,通过求解其位置逆解,得到了机器人的理论工作空间。借助机器人样机的3转动自由度,精确地测量得到踝关节全域范围内的生理运动范围。通过机器人样机的全范围自主运动,记录并获得装置的有效工作空间,机器人有效工作空间小于理论工作空间,有效工作空间的测量具有较大的实际意义。进一步,对比分析机器人样机的有效工作空间和踝关节生理运动范围可知,两者在踝全域运动范围内的吻合度可达95%,较好地保障了踝关节康复所需要的运动空间。基于并联踝康复机器人的量纲一速度雅可比矩阵,对机器人的可操作度、灵巧性等运动学性能进行了分析,结果表明踝康复机器人在工作空间内不存在奇异位形且具有良好的运动学性能。
        The ankle rehabilitation exoskeleton is a critical equipment for foot drop and talipes valgus patients requiring extensive and repetitive rehabilitation training to make up deficiencies of the manual rehabilitation training and reduce the workload of rehabilitation physicians. According to the anatomical structure and motion characteristics of the ankle, an ankle rehabilitation robot with ■configuration has been proposed and developed which can realize the approximate coincidence between the centers of the ankle and the rehabilitation robot. Meanwhile, a force/torque information collection platform is constructed to improve the interactivity among the robot, patients and physicians. The kinematic model of this rehabilitation robot is established. The corresponding theoretical workspace is obtained through solving inverse kinematics. The physiological range of activity of the ankle is accurately measured in the whole movement area with the help of the 3-degree-of-freedom of the prototype. According to the autonomous motion of the prototype, the effective workspace is recorded and obtained. The effective workspace of the robot is less than the theoretical workspace. Furthermore, the results show that the percent of contact area in the effective workspace and the physiological range can reach 95% and the rehabilitation robot can provide enough space for the injured ankle. Finally, based on the velocity Jacobian matrix of the robot, the kinematic performance such as the maneuverability and dexterity is acquired. The results show that this rehabilitation robot has no singular position and processes good kinematic performance in the effective workspace.
引文
[1]焦爽,闫汝蕴.本体感觉训练预防踝关节运动损伤研究进展[J].中国运动医学杂志,2009,28(6):713-716.JIAO Shuang,YAN Ruyun.Research progress of proprioception training in preventing ankle injury[J].Chinese Journal of Sports Medicine,2009,28(6):713-716.
    [2]边辉,刘艳辉,梁志成,等.并联2-RRR/UPRR踝关节康复机器人机构及其运动学[J].机器人,2010,32(1):6-12.BIAN Hui,LIU Yanhui,LIANG Zhicheng,et al.A novel2-RRR/UPRR robot mechanism for ankle rehabilitation and its kinematics[J].Robot,2010,32(1):6-12.
    [3]何可,艾坤,谭洁,等.足下垂助行仪用于治疗脑卒中后踝关节功能障碍的临床研究[J].中国康复医学杂志,2015,30(5):472-475.HE Ke,AI Kun,TAN Jie,et al.Clinical study of foot drop walking aid in the treatment of ankle dysfunction after stroke[J].Chinese Journal of Rehabilitation Medicine,2015,30(5):472-475.
    [4]陆宸照.踝关节损伤的诊断和治疗[M].上海:上海科学技术文献出版社,1998.LU Chenzhao.Diagnosis and treatment of ankle injury[M].Shanghai:Shanghai Scientific and Technical Literature Publishing House,1998.
    [5]BLAYA J A,HERR H.Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2004,12(1):24-31.
    [6]AGRAWAL A,BANALA S K,AGRAWAL S K,et al.Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation[C]//International Conference on Rehabilitation Robotics,28 June-1 July,2005,Chicago,IL,USA.New York:IEEE,2005:41-44.
    [7]GIRONE M J,BURDEA G C,BOUZIT M.The“Rutgers Ankle”orthopedic rehabilitation interface[J].Proceedings of the ASME Haptics Symposium,1999,67:305-312.
    [8]GIRONE M J,BURDEA G C,BOUZIT M,et al.Astewart platform-based system for ankle telerehabilitation[J].Autonomous Robots,2001,10(2):203-212.
    [9]SAGLIA J A,TSAGARAKIS N G,DAI J S,et al.A high performance 2-dof over-actuated parallel mechanism for ankle rehabilitation[C]//IEEE International Conference on Robotics and Automation,12-17 May,2009,Kobe,Japan.New York,IEEE,2009:2180-2186.
    [10]DAI J S,ZHAO T,NESTER C.Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device[J].Autonomous Robots,2004,16(2):207-218.
    [11]刘更谦,高金莲,杨四新,等.踝关节康复训练并联机构构型及其运动学分析[J].机电产品开发与创新,2005,18(5):13-15.LIU Gengqian,GAO Jinlian,YANG Sixin,et al.The configuration of the ankle rehabilitation exercises parallel mechanism and its kinematics analysis[J].Development&Innovation of Machinery&Electrical Products,2005,18(5):13-15.
    [12]赵铁石,于海波,戴建生.一种基于3-RSS/S并联机构的踝关节康复机器人[J].燕山大学学报,2005,29(6):471-475.ZHAO Tieshi,YU Haibo,DAI Jiansheng.An ankle rehabilitation device based on 3-RSS/S parallel mechanism[J].Journal of Yanshan University,2005,29(6):471-475.
    [13]边辉,赵铁石,田行斌,等.生物融合式康复机构及其应用[J].机器人,2010,32(4):470-477.BIAN Hui,ZHAO Tieshi,TIAN Xingbin,et al.Bio-syncretic rehabilitation mechanism and its application[J].Robot,2010,32(4):470-477.
    [14]WANG C,FANG Y,GUO S,et al.Design and kinematical performance analysis of a 3-RUS/RRRredundantly actuated parallel mechanism for ankle rehabilitation[J].Journal of Mechanisms&Robotics,2013,5(4):041003.
    [15]王正义.足踝外科学[M].北京:人民卫生出版社,2006.WANG Zhengyi.Surgery of the foot and ankle[M].Beijing:People’s Medical Publishing House,2006.
    [16]COUGHLIN M,SALTZMAN C,ANDERSON R.曼氏足踝外科学[M].北京:人民卫生出版社,2015.COUGHLIN M,SALTZMAN C,ANDERSON R.Mann’s surgery of the foot and ankle[M].Beijing:People’s Medical Publishing House,2015.
    [17]LI Jianfeng,ZHANG Ziqiang,TAO Chunjing,et al.Structure design of lower limb exoskeletons for gait training[J].Chinese Journal of Mechanical Engineering.2015,28(5):878-887.
    [18]HOU Y L,HU X Z,ZENG D X,et al.Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism[J].Chinese Journal of Mechanical Engineering,2015,28(1):29-37.
    [19]LU Z J,LI W G,LI M J,et al.Development of a three freedoms ankle rehabilitation robot for ankle training[C]//TENCON 2015-2015 IEEE Region 10 Conference,1-4November,MaCao,China.New York:IEEE,2016:1-5.
    [20]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.HUANG Zhen,ZHAO Yongsheng,ZHAO Tieshi.Advanced spatial mechanism[M].Beijing:Higher Education Press,2006.
    [21]TSOI Y H,XIE S Q.Design and control of a parallel robot for ankle rehabiltation[J].International Journal of Intelligent Systems Technologies&Applications,2008,8(1-4):100-113.
    [22]汪满新,刘海涛,黄田.3-S(P)R并联机构运动学性能评价[J].机械工程学报,2017,53(5):108-115.WANG Manxin,LIU Haitao,HUANG Tian.Kinematics performance evaluation of a 3-SPR parallel manipulator[J].Journal of Mechanical Engineering,2017,53(5):108-115.
    [23]饶青,白师贤.6-6型Stewart机器人的可操作性分析及其定义[J].机器人,1994(6):345-349.RAO Qing,BAI Shixian.Manipulability analysis and deeinition of 6-SPS stewart robot[J].Robot,1994(6):345-349.
    [24]YOSHIKAWA T.Manipulability of robotic mechanisms[J].International Journal of Robotics Research,1985,4(2):3-9.
    [25]SALISBURY J K.Articulated hands:Force control and kinematic issues[J].International Journal of Robotics Research,1982,1(1):4-17.
    [26]李剑锋,刘钧辉,张雷雨,等.人机相容型肩关节康复外骨骼机构的运动学与灵活性分析[J].机械工程学报,2018,54(3):46-54.LI Jianfeng,LIU Junhui,ZHANG Leiyu,et al.Kinematics and dexterity analysis of the human-machine compatible exoskeleton mechanism for shoulder joint rehabilitation[J].Journal of Mechanical Engineering,2018,54(3):46-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700