鲜饲料与混合饲粮对咖啡貂(Mustela iutreola)肠道微生物多样性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Fresh Feed and Mixed Diets on Gut Microbiota Diversity in European Mink(Mustela iutreola)
  • 作者:刘晗璐 ; 钟伟 ; 司华哲 ; 李志鹏 ; 李光玉
  • 英文作者:LIU Hanlu;ZHONG Wei;SI Huazhe;LI Zhipeng;LI Guangyu;Institute of Special Animal and Plant Sciences,Chinese Academy of Agricultural Sciences;
  • 关键词:咖啡貂 ; 鲜饲料 ; 混合饲粮 ; 肠道菌群
  • 英文关键词:European mink;;fresh feed;;mixed diet;;gut microbiota
  • 中文刊名:DWYX
  • 英文刊名:Chinese Journal of Animal Nutrition
  • 机构:中国农业科学院特产研究所;
  • 出版日期:2018-12-03 14:07
  • 出版单位:动物营养学报
  • 年:2019
  • 期:v.31
  • 基金:中国农业科学院创新工程专项(CAAS-ASTIP-2017-ISAPS);; 吉林省科技发展计划项目(20160307022NY)
  • 语种:中文;
  • 页:DWYX201901029
  • 页数:10
  • CN:01
  • ISSN:11-5461/S
  • 分类号:237-246
摘要
本试验旨在研究鲜饲料与混合饲粮对咖啡貂(Mustela iutreola)肠道微生物多样性的影响。随机选取20只成年雄性咖啡貂,分为2组,分别饲喂鲜饲料和混合饲粮,每组10只。屠宰后取后肠内容物,提取肠道细菌基因组。利用16S rDNA高通量测序技术,分析和比较不同序列的分类学水平,研究肠道微生物多样性。结果表明:在2组水貂后肠中,细菌主要归类于6个门,其中厚壁菌门为水貂肠内相对丰度最高的细菌,混合饲粮组和鲜饲料组相对丰度分别为84.08%和83.50%(P=0.36),其次分别为变形菌门(9.37%和7.22%)(P=0.36)、放线菌门(3.85%和5.72%)(P=0.28)、未分类细菌门(1.69%和2.18%)(P=0.47)、蓝细菌门(0.66%和0.85%)(P=0.07)以及拟杆菌门(0.11%和0.32%)(P=0.36),这6个门占所有细菌的99%以上。混合饲粮组乳酸杆菌属细菌相对丰度最高(29.9%),魏斯氏菌属相对丰度次之(21.7%),而鲜饲料组魏斯氏菌属相对丰度最高(32.2%),乳酸杆菌属相对丰度次之(22.2%),其他细菌相对丰度相似。混合饲粮组和鲜饲料组水貂肠道菌群在聚类分析上差异不显著(P>0.05),但混合饲粮组差异大的个体数量多于鲜饲料组。综上所述,饲喂营养水平相似,但饲粮组成不同的咖啡貂肠道内细菌组成相似,但不同细菌相对丰度不同,混合饲粮组后肠菌群个体差异较大,分析表明在本研究中饲粮组成是影响咖啡貂肠道菌群差异的主要因素。
        This experiment was aimed to investigate effects of fresh feed and mixed diets on gut microbiota diversity in European mink(Mustela iutreola).Twenty European minks were selected and divided into 2 groups with 10 minks in each group,and were fed fresh feed and mixed diet,respectively.After slaughter,intestinal contents were collected for extract genome of intestinal bacteria.The high-throughput 16 S rRNA gene sequencing technology was used to analyze and compare systematics level of different sequences for investigating intestine microbial diversity.The results showed as follows:in the hindgut of minks in this 2 groups,bacteria were ranked 6 phylum,the relative abundant of Firmicutes was the highest in the mink intestine,the relative abundant of fresh feed group and mixed diet group were 84.08% and 83.50%(P=0.36),respectively,followed by Proteobacteria(9.37% and 7.22%)(P=0.36),Actinobacteria(3.85% and 5.72%)(P=0.28),Bacteria_Uncalssified(1.69% and 2.18%)(P=0.47),Cyanobacteria(0.66% and 0.85%)(P=0.07),Bacteroidetes(0.11% and 0.32%)(P=0.36),the proportion of this 6 phylum to all bacteria was more than99%.Lactobacillus was the most relative abundant bacteria,followed by Weissella(21.7%) in the mixed diet group.Weissella showed the highest relative abundance(32.2%),followed by Lactobacillus(22.2%) in the fresh feed group,and the other bacteria had the similar relative abundance.Principal coordinates analysis(PCoA) and cluster analysis revealed that there were no significant differences in the microbial community between the 2 groups(P>0.05).However,the number of individuals with significant difference in mixed diet group was more than that in fresh feed group.In conclusion,intestinal bacteria composition of European mink was similar when fed the same nutrition level diet,but not feed composition.However,different bacterial relative abundances are different,and vary individually in mixed diet group.The analysis of results indicate that the diet is the one of main factors affecting intestinal flora difference of minks.
引文
[1]FAN Z Y,LIU H L,WANG F,et al.Determination of bacterial community composition in the distal gut of mink(Mustela vison)by high-throughput sequencing[J].Microbiology China,2016,43(1):123-130.
    [2]NAGATA T,YAMADA H,KIRIIKE N.Treatment of conditions preceding eating disorders,with social anxiety disorders as an example[J].Seishin Shinkeigaku Zasshi,2007,109(12):1129-1134.
    [3]XU Z J,KNIGHT R.Dietary effects on human gut microbiome diversity[J].British Journal of Nutrition,2015,113:S1-S5.
    [4]杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社,1993.
    [5]SUN D L,JIANG X,WU Q L,et al.Intragenomic heterogeneity of 16S r RNA genes causes overestimation of prokaryotic diversity[J].Applied and Environmental Microbiology,2013,79(19):5962-5969.
    [6]JIANG X T,PENG X,DENG G H,et al.Illumina sequencing of 16S r RNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J].Microbial Ecology,2013,66(1):96-104.
    [7]SRINIVASAN S,HOFFMAN N G,MORGAN MT,et al.Bacterial communities in women with bacterial vaginosis:high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria[J].PLoS One,2012,7(6):e37818.
    [8]WILLIAMS C,ELNIF J,BUDDINGTON R K.The gastrointestinal bacteria of mink(Mustela vison L.):influence of age and diet[J].Acta Veterinaria Scandinavica,1998,39(4):473-482.
    [9]BENJAMINO J,LINCOLN S,SRIVASTAVA R,et al.Low-abundant bacteria drive compositional changes in the gut microbiota after dietary alteration[J].Microbiome,2018,6:86.
    [10]MURPHY K,O'SHEA C A,RYAN C A,et al.The gut microbiota composition in dichorionic triplet sets suggests a role for host genetic factors[J].PLoS One,2015,10(4):e0122561.
    [11]ZHANG M,HANG X M,TAN J,et al.The host genotype and environment affect strain types of Bifidobacterium longum subsp.Longum inhabiting the intestinal tracts of twins[J].Applied and Environmental Microbiology,2015,81(14):4774-4781.
    [12]BECKER A A MJ,HESTA M,HOLLANTS J,et al.Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae[J].BMC Microbiology,2014,14:13.
    [13]ZHANG H H,CHEN L.Phylogenetic analysis of 16S r RNA gene sequences reveals distal gut bacterial diversity in wild wolves(Canis lupus)[J].Molecular Biology Reports,2010,37(8):4013-4022.
    [14]WU X Y,ZHANG H H,CHEN J,et al.Comparison of the fecal microbiota of dholes high-throughput Illumina sequencing of the V3-V4 region of the 16S r RNA gene[J].Applied Microbiology and Biotechnology,2016,100(8):3577-3586.
    [15]ARSNE-PLOETZE F,NICOLOFF H,BRINGEL F.Lactobacillus plantarum ccl gene is non-essential,arginine-repressed and codes for a conserved protein in Firmicutes[J].Archives of Microbiology,2005,183(5):307-316.
    [16]BERNINI L J,SIMO A N C,ALFIERI D F,et al.Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome:a randomized trial.Effects of probiotics on metabolic syndrome[J].Nutrition,2016,32(6):716-719.
    [17]HUANG S W,ZHANG H Y.The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae(Coleoptera:Scarabaeidae)[J].PLoS One,2013,8(2):e57169.
    [18]LEY R E,HAMADY M,LOZUPONE C,et al.Evolution of mammals and their gut microbes[J].Science,2008,320(5883):1647-1651.
    [19]LIU M,DONG Y,ZHANG W C,et al.Diversity of bacterial community during spring phytoplankton blooms in the central Yellow Sea[J].Canadian Journal of Microbiology,2013,59(5):324-332.
    [20]赵晓伟,丁君,窦妍,等.基于Mi Seq测序技术分析红鳍东方鲀养殖环境菌群多样性[J].生态学杂志,2015,34(10):2965-2970.
    [21]ZHU L,WU Q,DAI J,et al.Evidence of cellulose metabolism by the giant panda gut microbiome[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(43):17714-17719.
    [22]MATSUI T,TANAKA J,NAMIHIRA T,et al.Antibiotics production by an actinomycete isolated from the termite gut[J].Journal of Basic Microbiology,2012,52(6):731-735.
    [23]CAO Y R,JIANG Y,JIN R X,et al.Enteractinococcus coprophilus gen.nov.,sp.nov.,of the family Micrococcaceae,isolated from Panthera tigris amoyensis faeces,and transfer of Yaniella fodinae Dhanjal et al.2011 to the genus Enteractinococcus as Enteractinococcus fodinae comb.nov[J].International Journal of Systematic and Evolutionary Microbiology,2012,62(Pt 11):2710-2716.
    [24]DICK L K,BERNHARD A E,BRODEUR T J,et al.Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification[J].Applied and Environmental Microbiology,2005,71(6):3184-3191.
    [25]BECKER A A MJ,HESTA M,HOLLANTS J,et al.Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae[J].BMC Microbiology,2014,14:43.
    [26]TURNBAUGH P J,LEY R E,MAHOWALD MA,et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J].Nature,2006,444(7122):1027-1031.
    [27]QIAO Y,SUN J,DING Y Y,et al.Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress[J].Applied Microbiology and Biotechnology,2013,97(4):1689-1697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700