水合肼还原的氧化石墨烯吸附NO_2的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption of NO_2 by hydrazine hydrate-reduced graphene oxide
  • 作者:李闯 ; 蔡理 ; 李伟伟 ; 谢丹 ; 刘保军 ; 向兰 ; 杨晓阔 ; 董丹娜 ; 刘嘉豪 ; 李成 ; 危波
  • 英文作者:Li Chuang;Cai Li;Li Wei-Wei;Xie Dan;Liu Bao-Jun;Xiang Lan;Yang Xiao-Kuo;Dong Dan-Na;Liu Jia-Hao;Li Cheng;Wei Bo;Department of Basic Science, Air Force Engineering University;Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University;The First Aeronautic Institute, Air Force Engineering University;Department of Chemical Engineering, Tsinghua University;
  • 关键词:还原氧化石墨烯 ; 水合肼 ; 二氧化氮 ; 气体传感
  • 英文关键词:reduced graphene oxide;;hydrazine hydrate;;nitrogen dioxide;;gas sensing
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:空军工程大学基础部;清华大学微电子学研究所信息科学与技术国家实验室;空军工程大学航空机务士官学校;清华大学化学工程系;
  • 出版日期:2019-05-24 07:27
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51672154,51774191,11405270);; 国家重点研发计划(批准号:2016YFA0200200);; 陕西省自然科学基础研究计划(批准号:2017JM6072)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911031
  • 页数:6
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:257-262
摘要
还原氧化石墨烯由于独特的原子结构,作为气体检测领域有潜力的候选者引起了研究者们的广泛兴趣.本文采用水合肼作为还原剂来制备还原氧化石墨烯,并以此作为叉指电极的气体敏感层,研究了其对NO2气体的响应特性.结果表明,水合肼还原的氧化石墨烯可以实现在室温下对浓度为1—40 ppm (1 ppm=10–6)的NO2气体的检测,具有较好的响应性和重复性,恢复率可以达到71%以上,但是灵敏度只有0.00201 ppm–1,还有较大的提升空间.此外,对浓度5 ppm的NO2的响应和恢复时间分别是319 s和776 s.水合肼还原的氧化石墨烯气体传感器的传感机制可归因于NO2分子和传感材料之间的电荷转移.还原氧化石墨烯的突出电学特性促进了电子转移过程,这使得传感器在室温下表现出优异的气体传感性能.本实验研究可为石墨烯基传感器件的应用奠定一定的基础.
        Reduced graphene oxide, as a candidate for gas detection due to its unique atomic structure, is arousing the wide interest of researchers. In this paper, hydrazine hydrate is used to reduce graphene oxide prepared by the modified Hummers method. A chemical resistance gas sensor is fabricated. The prepared reduced graphene oxide is used as a gas sensitive layer of Au planar interdigital electrode. The gas sensing characteristics such as responsivity, recovery and repeatability of NO2 gas are studied. The results show that the graphene oxide reduced by hydrazine hydrate can detect the NO2 gas at a concentration of 1-40 ppm under room temperature.It has good responsivity and repeatability. The recovery rate can reach more than 71%. However, the sensitivity is only 0.00201 ppm–1, and there is much room for improvement. In addition, the response time and recovery time for NO2 at 5 ppm concentration are 319 s and 776 s, respectively. The sensing mechanism of the hydrazine hydrate-reduced graphene oxide gas sensor can be attributed to charge transfer between the NO2 molecule and the sensing material. The outstanding electrical properties of the reduced graphene oxide promote the electron transfer process. This allows the sensor to exhibit excellent gas sensing performance at room temperature. The reduced graphene oxide appears as a typical p-type semiconductor and the oxidizing gas NO2 acts as an electron acceptor. Therefore, the adsorption of NO2 gas leads to the enhancement of the hole density and conductivity of the reduced graphene oxide. Another reason is the presence of defects and oxygen-containing functional groups on graphene sheets. Some oxygen-containing groups remain on the graphene surface after an incomplete reduction reaction. Compared with pure graphene, the reduced graphene oxide has hydroxyl groups and epoxy groups remaining on the surface. These functional groups will functionalize the material and promote the adsorption of gases. At the same time, the reduction reaction will further produce vacancies and structural defects. This will provide more reaction sites and thus conduce to the material further adsorbing the gas. In summary, the experimental research in this paper is of significance for studying the mechanism and characteristics of the reduced graphene oxide by using hydrazine hydrate as a reducing agent, and it can provide reference and lay a foundation for the applications of future graphene sensors.
引文
[1]Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A 2004 Science 306666
    [2]Sun J P,Liao Y M,Cao X C 2013 Acta Phys.Sin.62 036301(in Chinese)[孙建平,缪应蒙,曹相春2013物理学报62036301]
    [3]Wei X L,Chen Y P,Wang R Z,Zhong J X 2013 Acta Phys.Sin.62 057101(in Chinese)[魏晓林,陈元平,王如志,钟建新2013物理学报62 057101]
    [4]Choudhuri I,Patra N,Mahata A,Ahuja R,Pathak B 2015 J.Phys.Chem.C 119 24827
    [5]Gavgani J N,Hasani A,Nouri M,Mahyari M,Salehi A 2016Sens.Actuator B:Chem.229 239
    [6]Ye Z,Tai H,Xie T,Yuan Z,Liu C,Jiang Y 2016 Sens.Actuator B:Chem.223 149
    [7]Matsuba K,Wang C,Saruwatari K,Uesusuki Y,Akatsuka K,Osada M,Ebina Y,Ma R,Sasaki T 2017 Sci.Adv.3e1700414
    [8]Pour M M,Lashkov A,Radocea A,Liu X,Sun T,Lipatov A,Korlacki R A,Shekhirev M,Aluru N R,Lyding J W 2017Nat.Commun.8 820
    [9]Singh E,Meyyappan M,Nalwa H S 2017 ACS Appl.Mater.Interfaces 9 34544
    [10]Liu J H,Yang X K,Zhang M L,Wei B,Li C,Dong D N,Li C 2019 IEEE Electron Device Lett.40 220
    [11]Liu J H,Yang X K,Cui H Q,Wang S,Wei B,Li C,Li C,Dong D N 2019 J.Magn.Magn.Mater.474 161
    [12]Zhang T,Ma Y D,Huang B B,Dai Y 2019 ACS Appl.Mater.Interfaces 11 6104
    [13]Schedin F,Geim A,Morozov S,Hill E,Blake P,Katsnelson M,Novoselov K 2007 Nat.Mater.6 652
    [14]Venugopal G,Krishnamoorthy K,Mohan R,Kim S J 2012Mater.Chem.Phys.132 29
    [15]Yasaei P,Kumar B,Hantehzadeh R,Kayyalha M,Baskin A,Repnin N,Wang C,Klie R F,Chen Y P,Král P 2014 Nat.Commun.5 4911
    [16]Chung M G,Kim D H,Lee H M,Kim T,Choi J H,Kyun Seo D,Yoo J B,Hong S H,Kang T J,Kim Y H 2012 Sens.Actuator B:Chem.166 172
    [17]Yavari F,Koratkar N 2012 J.Phys.Chem.Lett.3 1746
    [18]Novoselov K,Jiang D,Schedin F,Booth T,Khotkevich V,Morozov S,Geim A 2005 Proc.Natl.Acad.Sci.U.S.A.10210451
    [19]Park S,Ruoff R S 2009 Nat.Nanotechnol.4 217
    [20]Berger C,Song Z,Li X,Wu X,Brown N,Naud C,Mayou D,Li T,Hass J,Marchenkov A N 2006 Science 312 1191
    [21]Han L Z,Zhao Z X,Ma Z Q 2014 Acta Phys.Sin.63 248103(in Chinese)[韩林芷,赵占霞,马忠权2014物理学报63248103]
    [22]Dua V,Surwade S P,Ammu S,Agnihotra S R,Jain S,Roberts K E,Park S,Ruoff R S,Manohar S K 2010 Angew.Chem.122 2200
    [23]Li W,Li X,Cai L,Sun Y,Sun M,Xie D 2018 J.Nanosci.Nanotechnol.18 7927
    [24]Li W,Teng C,Sun Y,Cai L,Xu J L,Sun M,Li X,Yang X,Xiang L,Xie D 2018 ACS Appl.Mater.Interfaces 10 34485
    [25]Hu N,Wang Y,Chai J,Gao R,Yang Z,Kong E S W,Zhang Y 2012 Sens.Actuator B:Chem.163 107
    [26]Brodie B 1860 Ann.Chim.Phys.59 e472
    [27]Staudenmaier L 1898 Ber.Dtsch.Chem.Ges.31 1481
    [28]Hummers Jr W S,Offeman R E 1958 J.Am.Chem.Soc.801339
    [29]Hong F,Zhou L Q,Huang Y,Song H J,Wang T,Luo X R,Wu Z 2012 Chem.Bioeng.29 31(in Chinese)[洪菲,周立群,黄莹,宋荷娟,王婷,罗辛茹,伍珍2012化学与生物工程29 31]
    [30]Compton O C,Nguyen S T 2010 Small 6 711
    [31]Lipatov A,Varezhnikov A,Wilson P,Sysoev V,Kolmakov A,Sinitskii A 2013 Nanoscale 5 5426
    [32]Ren P G,Yan D X,Ji X,Chen T,Li Z M 2010Nanotechnology 22 055705
    [33]Wan W B,Zhao Z B,Hu H,Zhou Q,Fan Y R,Qiu J S 2011Carbon 8 2878
    [34]Alizadeh T,Soltani L H 2016 Sens.Actuator B:Chem.234361
    [35]Li D,Müller M B,Gilje S,Kaner R B,Wallace G G 2008Nat.Nanotechnol.3 101
    [36]Cho B,Hahm M G,Choi M,Yoon J,Kim A R,Lee Y J,Park S G,Kwon J D,Kim C S,Song M 2015 Sci.Rep.58052
    [37]Jin C,Tang X,Tan X,Smith S C,Dai Y,Kou L 2019 J.Mater.Chem.A 7 1099
    [38]Yang L,Cai Z,Hao L,Ran L,Xu X,Dai Y,Pan S,Jing B,Zou J 2018 Electrochim.Acta 283 448
    [39]Ko K Y,Song J G,Kim Y,Choi T,Shin S,Lee C W,Lee K,Koo J,Lee H,Kim J 2016 ACS Nano 10 9287
    [40]Lu G,Ocola L E,Chen J 2009 Appl.Phys.Lett.94 083111
    [41]Pearce R,Iakimov T,Andersson M,Hultman L,Spetz A L,Yakimova R 2011 Sens.Actuator B:Chem.155 451
    [42]Yavari F,Castillo E,Gullapalli H,Ajayan P M,Koratkar N2012 Appl.Phys.Lett.100 203120
    [43]Qazi M,Nomani M W,Chandrashekhar M,Shields V B,Spencer M G,Koley G 2010 Appl.Phys.Express 3 075101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700