新型纳米传感薄膜材料在发酵组分检测中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent research progress on novel sensing film nanomaterials for detection of fermentation components
  • 作者:储震宇 ; 金万勤
  • 英文作者:CHU Zhenyu;JIN Wanqin;State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University;
  • 关键词:发酵 ; 化学分析 ; 过程控制 ; 纳米材料 ; 纳米结构
  • 英文关键词:fermentation;;chemical analysis;;process control;;nanomaterials;;nanostructure
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:南京工业大学化工学院材料化学工程国家重点实验室;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(21490585,21706116);国家自然科学基金重大科研仪器研制项目(21727818);; 教育部创新团队(IRT_17R54);; 江苏高校优势学科建设工程
  • 语种:中文;
  • 页:HGJZ201901032
  • 页数:12
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:389-400
摘要
发酵工业目前缺少组分浓度实时监控技术以实现精确过程调控,因此,发酵用生物传感器逐渐受到该领域的重视。本文将关注发酵用生物传感器的最新研究进展,特别综述新型纳米传感材料在发酵组分检测中的最新研究成果,介绍在不同的发酵体系中纳米材料的设计及合成策略,包括贵金属、金属氧化物、配位化合物、有机化合物及碳基等各类纳米材料,简述这些纳米材料在发酵传感中的检测机理以及所开发的生物传感器在不同真实发酵液中的检测性能,从检测灵敏度、工作电位、抗干扰能力等方面系统地评价各类纳米材料在发酵环境中使用的优势和不足,分析发酵体系专用生物传感器材料的发展方向,为研发出可实现"多组分"及"宽检测范围"的发酵组分浓度检测技术提供重要的参考及借鉴。
        Due to the lack of an efficient online monitor technology for the component concentration in the fermentation, more and more researches are working on the development of the fermentationbiosensors. This review mainly focuses on the recent research progresses on the fermentation biosensors,especially on the progress of the recent synthesized novel nanomaterials for the construction of thefermentation biosensor. The various nanomaterial design strategies and preparation methods have beenintroduced for the different fermentation systems, including metal, metal oxide, coordination compound,organic compound, and carbon based nanomaterials. The mechanisms of these nanomaterials and theirpractical biosensing performance were also discussed. According to the sensitivity, working potential and anti-inteference ability, the advantages and disadvantages of these materials were evaluated, and the future development of the biosensing materials for the fermentation detection had also been analyzed. The review provides an important reference to the biosensor fabrication for the wide range and multiple fermentation components detection.
引文
[1]欧阳平凯.发酵工程关键技术及其应用[M].北京:化学工业出版社,2005.OUYANG P K. Key technology and application of fermentationengineering[M]. Beijing:Chemical Industry Press,2005.
    [2] PATRA?CU I,B LDEA C S,KISS A A. Eco-efficient butanolseparation in the ABE fermentation process[J]. Separation&Purification Technology,2017,177:49-61.
    [3]李成群.中国生物发酵产品产量达2420万吨居世界第一[EB/OL].[2015-04-24]. http://www.chinanews.com/ny/2015/04-24/7232189.shtml.LI C Q. China's output of biological fermentation productsreached 24.2 million tons, ranking first in the world[EB/OL].[2015-04-24]. http://www. chinanews. com/ny/2015/04-24/7232189.shtml.
    [4]刘二伟,朱文学,曹力,等.我国发酵工业存在的主要问题及解决措施[J].生物技术通讯,2015,26(3):446-448.LIU E W,ZHU W X,CAO L,et al. The main problems andsolutions in the fermentation industry in China[J]. Letters inBiotechnology,2015,26(3):446-448.
    [5] KIM S H, HAN S K, SHIN H S. Effect of substrate concentrationon hydrogen production and 16S rDNA-based analysis of themicrobial community in a continuous fermenter[J]. ProcessBiochemistry,2006,41(1):199-207.
    [6] QURESHI N,SAHA B C,HECTOR R E,et al. Butanol productionfrom wheat straw by simultaneous saccharification andfermentation using Clostridium beijerinckii:Part—Batchfermentation[J]. Biomass and Bioenergy,2008,32(2):168-175.
    [7] MEARS L,STOCKS S M,SIN G,et al. A review of controlstrategies for manipulating the feed rate in fed-batch fermentationprocesses[J]. Journal of Biotechnology,2017,245:34-46.
    [8] BELLON-MAUREL V,ORLIAC O,CHRISTEN P. Sensors andmeasurements in solid state fermentation:a review[J]. ProcessBiochemistry,2003,38(6):881-896.
    [9] KROMMENHOEK E E,VAN LEEUWEN M,GARDENIERS H,et al. Lab-scale fermentation tests of microchip with integratedelectrochemical sensors for pH, temperature, dissolved oxygen andviable biomass concentration[J]. Biotechnology&Bioengineering,2008,99(4):884-892.
    [10] ALEXANDROPOULOU M,ANTONOPOULOU G,LYBERATOSG. A novel approach of modeling continuous dark hydrogenfermentation[J]. Bioresource Technology,2017,250:784.
    [11] WANG J. Glucose biosensors:40 years of advances and challenges[J]. Electroanalysis,2010,13(12):983-988.
    [12] GOODE J A,RUSHWORTH J V H,MILLNER P A. Biosensorregeneration:a review of common techniques and outcomes[J].Langmuir the ACS Journal of Surfaces&Colloids,2015,31(23):6267-6276.
    [13] BROOKS K E,RAWAL N,HENDERSON A R. Laboratoryassessment of three new monitors of blood glucose, AccuChekⅡGlucometerⅡand Glucosan 2000[J]. Clinical Chemistry,1987,32(12):2195-2200.
    [14]张先恩.生物传感器[M].北京:化学工业出版社, 2006.ZHANG X E. Biosensor[M]. Beijing:Chemical Industry Press,2006.
    [15] WANG J. Electrochemical glucose biosensors[J]. ChemicalReviews,2008,108:814-825.
    [16] CHU Z Y,LIU Y,JIN W Q. Recent progress in Prussian bluefilms:methods used to control regular nanostructures forelectrochemical biosensing applications[J]. Biosensors&Bioelectronics,2017,96:17-25.
    [17] LIU L F,SHI L,CHU Z Y,et al. Prussian blue nanocubesmodified graphite electrodes for the electrochemical detection ofvarious analytes with high performance[J]. Sensors and ActuatorsB:Chemical,2014,202:820-826.
    [18] XU J J,ZHAO W,LUO X L,et al. A sensitive biosensor for lactatebased on layer-by-layer assembling MnO2nanoparticles andlactate oxidase on ion-sensitive field-effect transistors[J].Chemical Communications,2005,6(6):792-794.
    [19] OZEL R E,ISPAS C,GANESANA M,et al. Glutamate oxidasebiosensor based on mixed ceria and titania nanoparticles for thedetection of glutamate in hypoxic environments[J]. Biosensors&Bioelectronics,2014,52:397-402.
    [20] ZHANG L,XU Z,SUN X,et al. A novel alcohol dehydrogenasebiosensor based on solid-state electrogenerated chemiluminescenceby assembling dehydrogenase to Ru(bpy)32+Au nanoparticlesaggregates[J]. Biosensors&Bioelectronics,2007,22(6):1097-1100.
    [21] TSAI Y C,HUANG J D,CHIU C C. Amperometric ethanolbiosensorbasedonpoly(vinylalcohol)-multiwalledcarbonnanotube-alcohol dehydrogenase biocomposite[J]. Biosensors&Bioelectronics,2007,22(12):3051-3056.
    [22] KUMAR G S,WEE Y,LEE I,et al. Stabilized glyceroldehydrogenase for the conversion of glycerol to dihydroxyacetone[J]. Chemical Engineering Journal,2015,276:283-288.
    [23] ZHANG H,XU Z,SHEN J,et al. Effects and mechanism ofatmospheric-pressure dielectric barrier discharge cold plasma onlactate dehydrogenase(LDH)enzyme[J]. Scientific Reports,2015,5:10031.
    [24] VARGAS E,CONZUELO F,RUIZ M,et al. Automatedbioanalyzer based on amperometric enzymatic biosensors for thedetermination of ethanol in low-alcohol beers[J]. Beverages,2017,3(4):22.
    [25] WANG L,TAO T,SU W,et al. A disease model of diabeticnephropathy in a glomerulus-on-a-chip microdevice[J]. Lab on AChip,2017,17(10):1749-1760.
    [26] CHU Z Y,LI L L,LIU G P,et al. A novel membrane withheterogeneously functionalized nanocrystal layers performingblood separation and sensing synchronously[J]. Chemical-ⅠCommunications,2016,52(86):12706-12709.
    [27] LIANG B,GUO X,FANG L,et al. Study of direct electron transferand enzyme activity of glucose oxidase on graphene surface[J].Electrochemistry Communications,2015,50:1-5.
    [28] CHU Z Y,PENG J M,JIN W Q. Advanced nanomaterial inks forscreen-printed chemical sensors[J]. Sensors and Actuators B:Chemical,2017,243:919-926.
    [29] GUERRIERI A,LATTANZIO V,PALMISANO F,et al.Electrosynthesized poly(pyrrole)/poly(2-naphthol)bilayermembrane as an effective anti-interference layer for simultaneousdetermination of acethylcholine and choline by a dual electrodeamperometric biosensor[J]. Biosensors&Bioelectronics,2006,21(9):1710-1718.
    [30] EGGINS B R. Chemical sensors and biosensors[M]. New York:John Wiley&Sons,2008.
    [31] COOPER J,CASS T. Biosensors[M]. New York:Oxford UniversityPress,2004.
    [32] TRIPATHI V S,KANDIMALLA V B,JU H. Amperometricbiosensor for hydrogen peroxide based on ferrocene-bovine serumalbumin and multiwall carbon nanotube modified ormosilcomposite[J]. Biosensors and Bioelectronics,2006,21(8):1529-1535.
    [33] LIU Y,CHU Z Y,JIN W Q. A sensitivity-controlled hydrogenperoxide sensor based on self-assembled Prussian blue modifiedelectrode[J]. Electrochemistry Communications,2009,11(2):484-487.
    [34] JIA J,WANG B,WU A,et al. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling goldnanoparticles to three-dimensional sol-gel network[J]. AnalyticalChemistry,2002,74(9):2217-2223.
    [35] SOLANKI P R,KAUSHIK A,AGRAWAL V V,et al.Nanostructured metal oxide biosensors[J]. NPG AsiaMaterials,2011,3(1):17.
    [36] HUYNH T P,SHARMA P S,SOSNOWSKA M,et al.Functionalized polythiophenes:recognition materials forchemosensors and biosensors of superior sensitivity, selectivity,and detectability[J]. Progress in Polymer Science,2015,47:1-25.
    [37] CHAN D,BARSAN M M,KORPAN Y,et al. L-lactate selectiveimpedimetric bienzymatic biosensor based on lactatedehydrogenase and pyruvate oxidase[J]. Electrochimica Acta,2017,231:209-215.
    [38] ARYA S K,SAHA S,RAMIREZ-VICK J E,et al. Recentadvances in ZnO nanostructures and thin films for biosensorapplications[J]. Analytica Chimica Acta,2012,737:1-21.
    [39] CHEN S,YUAN R,CHAI Y,et al. Electrochemical sensing ofhydrogen peroxide using metal nanoparticles:a review[J].Microchimica Acta,2013,180(1/2):15-32.
    [40] UPDIKE S,HICKS G. Reagentless substrate analysis withimmobilized enzymes[J]. Science,1967,158(3798):270-272.
    [41] JENA B K,RAJ C R. Electrochemical biosensor based onintegrated assembly of dehydrogenase enzymes and goldnanoparticles[J]. Analytical Chemistry,2006,78(18):6332-6339.
    [42] TI?G A. Highly sensitive amperometric biosensor fordetermination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide nanocomposite[J].Talanta,2017,175:382-389.
    [43] LAMAS-ARDISANA P J,LOAIZA O A,A ORGA L,et al.Disposable amperometric biosensor based on lactate oxidaseimmobilised on platinum nanoparticle-decorated carbon nanofiberand poly(diallyldimethylammonium chloride)films[J]. Biosensors&Bioelectronics,2014,56:345-351.
    [44] CHU Z Y,SHI L,LIU L F,et al. Highly enhanced performance ofglucose biosensor via in situ growth of oriented Au micro-cypress[J]. Journal of Materials Chemistry,2012,22(41):21917-21922.
    [45] SAMPHAO A,BUTMEE P,SAEJUENG P,et al. Monitoring ofglucose and ethanol during wine fermentation by bienzymaticbiosensor[J]. Journal of Electroanalytical Chemistry,2018,816:179-188.
    [46] RAHMAN M M,AHAMMAD A,JIN J H,et al. A comprehensivereview of glucose biosensors based on nanostructured metal-oxides[J]. Sensors,2010,10(5):4855-4886.
    [47] XIAO F,LI Y,ZAN X,et al. Growth of metal-metal oxidenanostructures on freestanding graphene paper for flexiblebiosensors[J]. Advanced Functional Materials,2012,22(12):2487-2494.
    [48] BIROL G,üNDEY C,CINAR A. A modular simulation packagefor fed-batch fermentation:penicillin production[J]. Computers&Chemical Engineering,2002,26(11):1553-1565.
    [49] IBUPOTO Z H,ALI S M,KHUN K,et al. ZnO nanorods basedenzymatic biosensor for selective determination of penicillin[J].Biosensors,2011,1(4):153-163.
    [50] AMPELLI C,LEONARDI S G,GENOVESE C,et al. Monitoringof glucose in fermentation processes by using Au/TiO2compositesas novel modified electrodes[J]. Journal of AppliedElectrochemistry,2015,45(9):943-951.
    [51] RICCI F,PALLESCHI G. Sensor and biosensor preparation,optimisation and applications of Prussian blue modified electrodes[J]. Biosensors and Bioelectronics,2005,21(3):389-407.
    [52] WU X Q,MA J G,LI H,et al. Metal-organic framework biosensorwith high stability and selectivity in a bio-mimic environment[J].Chemical Communications,2015,51(44):9161-9164.
    [53] ITAYA K,UCHIDA I,NEFF V D. Electrochemistry ofpolynuclear transition metal cyanides:Prussian blue and itsanalogues[J]. Accounts of Chemical Research,1986,19(6):162-168.
    [54] KARYAKIN A A,KARYAKINA E E,GORTON L. Amperometricbiosensor for glutamate using Prussian blue-based “artificialperoxidase”as a transducer for hydrogen peroxide[J]. AnalyticalChemistry,2000,72(7):1720-1723.
    [55] VAUCHER S,LI M,MANN S. Synthesis of Prussian bluenanoparticles and nanocrystal superlattices in reversemicroemulsions[J]. Angewandte Chemie International Edition,2000,39(10):1793-1796.
    [56] JOHANSSON A,WIDENKVIST E,LU J,et al. Fabrication ofhigh-aspect-ratio Prussian blue nanotubes using a porous aluminatemplate[J]. Nano letters,2005,5(8):1603-1606.
    [57] CHU Z Y,LIU Y,JIN W Q,et al. Facile fabrication of a Prussianblue film by direct aerosol deposition on a Pt electrode[J].Chemical Communications,2009,24(24):3566-3567.
    [58] CHU Z Y,ZHANG Y N,DONG X L,et al. Template-free growthof regular nano-structured Prussian blue on a platinum surfaceand its application in biosensors with high sensitivity[J]. Journal ofMaterials Chemistry,2010,20(36):7815-7820.
    [59] CHU Z Y,SHI L,LIU L F,et al. Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress[J]. Journal of Materials Chemistry,2012,22(41):21917.
    [60] CHU Z Y,SHI L,ZHANG Y N,et al. Single layer Prussian bluegrid as a versatile enzyme trap for low-potential biosensors[J].Journal of Materials Chemistry,2012,22(30):14874.
    [61] CHU Z Y,ZHANG Y N,DONG X L,et al. Template-free growthof regular nano-structured Prussian blue on a platinum surfaceand its application in biosensors with high sensitivity[J]. Journal ofMaterials Chemistry,2010,20(36):7815.
    [62] FU Y,LI P,BU L,et al. Exploiting metal-organic coordinationpolymers as highly efficient immobilization matrixes of enzymesfor sensitive electrochemical biosensing[J]. Analytical Chemistry,2011,83(17):6511-6517.
    [63] SHRIVASTAVA S,JADON N,JAIN R. Next-generation polymernanocomposite-based electrochemical sensors and biosensors:areview[J]. TrAC Trends in Analytical Chemistry,2016,82:55-67.
    [64] APETREI C, RODR GUEZ-M NDEZ M, DE SAJA J.Amperometric tyrosinase based biosensor using anelectropolymerized phosphate-doped polypyrrole film as animmobilization support. Application for detection of phenoliccompounds[J]. Electrochimica Acta,2011,56(24):8919-8925.
    [65] GERARD M,CHAUBEY A,MALHOTRA B. Application ofconducting polymers to biosensors[J]. Biosensors&Bioelectronics,2002,17(5):345-359.
    [66] PALMISANO F,RIZZI R,CENTONZE D,et al. Simultaneousmonitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based onelectropolymerized thin films[J]. Biosensors and Bioelectronics,2000,15(9/10):531-539.
    [67] GIMéNEZ GóMEZ P,GUTIéRREZ CAPITáN M,CAPDEVILAF,et al. Monitoring of malolactic fermentation in wine using anelectrochemical bienzymatic biosensor for L-lactate with longterm stability[J]. Analytica Chimica Acta,2016,905:126-133.
    [68] SHAO Y,WANG J,WU H,et al. Graphene based electrochemicalsensors and biosensors:a review[J]. Electroanalysis,2010,22(10):1027-1036.
    [69] WANG J. Carbon-nanotube based electrochemical biosensors:areview[J]. Electroanalysis,2005,17(1):7-14.
    [70] AHMAD M,PAN C,GAN L,et al. Highly sensitive amperometriccholesterol biosensor based on Pt-incorporated fullerene-likeZnO nanospheres[J]. The Journal of Physical Chemistry C,2009,114(1):243-250.
    [71] SEFCOVICOVA J,FILIP J,MASTIHUBA V,et al. Analysis ofethanol in fermentation samples by a robust nanocomposite-basedmicrobial biosensor[J]. Biotechnology Letters,2012,34(6):1033-1039.
    [72] RAFIGHI P,TAVAHODI M,HAGHIGHI B. Fabrication of a third-generation glucose biosensor using graphene-polyethyleneimine-gold nanoparticles hybrid[J]. Sensors and Actuators B:Chemical,2016,232:454-461.
    [73] CHU Z Y,LIU Y,XU Y Q,et al. In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection[J].Electrochimica Acta,2015,176:162-171.
    [74] CHU Z Y,SHI L,JIN W Q. 3D graphene nano-grid as ahomogeneous protein distributor for ultrasensitive biosensors[J].Biosensors&Bioelectronics,2014,61(21):422-428.
    [75] SHI L,CHU Z Y,LIU Y,et al. In situ fabrication of three‐dimensional graphene films on gold substrates with controllablepore structures for high performance electrochemical sensing[J].Advanced Functional Materials,2015,24(44):7032-7041.
    [76] KUMAR S,AHLAWAT W,KUMAR R,et al. Graphene, carbonnanotubes, zinc oxide and gold as elite nanomaterials forfabrication of biosensors for healthcare[J]. Biosensors&Bioelectronics,2015,70(1):498-503.
    [77] SONG Y,LUO Y,ZHU C,et al. Recent advances inelectrochemical biosensors based on graphene two-dimensionalnanomaterials[J]. Biosensors and Bioelectronics,2016,76:195-212.-

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700