高温快速合成纳米MAZ分子筛(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of fast crystallization of nanosized zeolite omega crystals at higher temperatures
  • 作者:章芬 ; 章凌 ; 杨志超 ; 韩世超 ; 朱秋艳 ; 王亮 ; 刘晨光 ; 孟祥举 ; 肖丰收
  • 英文作者:Fen Zhang;Ling Zhang;Zhichao Yang;Shichao Han;Qiuyan Zhu;Liang Wang;Chenguang Liu;Xiangju Meng;Feng-Shou Xiao;Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University;State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp.(CNPC), China University of Petroleum (East China);
  • 关键词:沸石分子筛MAZ ; 快速晶化 ; 高温 ; 铂纳米粒子 ; 加氢异构反应
  • 英文关键词:Zeolite omega;;Fast crystallization;;High temperature;;Pt nanoparticles;;Hydroisomerization
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:浙江大学化学系浙江省应用化学重点实验室;中国石油大学(华东)重油加工国家重点实验室催化重点实验室;
  • 出版日期:2019-05-29
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(91545111,91634201,21720102001);; National Key Research and Development Program of China(2017YFB0702803);; Shell Foundation~~
  • 语种:英文;
  • 页:CHUA201907012
  • 页数:12
  • CN:07
  • ISSN:21-1601/O6
  • 分类号:145-156
摘要
作为重要的离子交换、吸附、分离与催化材料,沸石分子筛广泛地应用于不同的工业过程中.MAZ(Omega)分子筛的合成往往需要较长的晶化时间,从而限制了它的广泛应用.根据阿伦尼乌斯公式可以判断,提高MAZ沸石分子筛的晶化温度可以大幅度地缩短晶化时间,达到快速合成沸石分子筛的目的.本文将分子筛晶化温度从100提高到180°C,在3.6 h制得MAZ沸石分子筛.X射线粉末衍射测试(XRD)表明,所合成的样品是具有高纯度和高结晶度的MAZ沸石分子筛.从扫描电镜(SEM)图片可以看出, MAZ-180 (MAZ-T, T代表晶化温度)是由宽200 nm、长2–3μm的纳米棒状组成.为了探究这些纳米棒状构成的形貌是否稳定,将样品进行了超声处理.XRD和SEM结果表明,经过处理的样品仍然具有原来的结晶度与形貌,确认了它们的结构稳定性.高分辨透射图进一步确认了MAZ-180样品的规整微孔结构.热重分析显示该样品在500–700°C出现两个放热峰,这归因于有机模板的燃烧.氮气吸附测试表明, MAZ-180的比表面积为187m~2/g,甚至超过低温合成MAZ的表面积,与它的高结晶度相一致.将氢型MAZ-180(H-MAZ-180)和MAZ-100(H-MAZ-100)分子筛浸渍0.5%Pt后,用于正十二烷的加氢异构反应,发现Pt/H-MAZ-180催化剂总是具有更高的异构产物选择性和更低的裂化产物选择性.这可能是因为MAZ-180样品具有更小的尺寸,更有利于反应中的扩散.MAZ-180沸石分子筛可快速合成的特点及其所表现出的优异的催化性能使其在未来广泛应用于催化反应中成为可能.
        Fast crystallization of nanosized zeolite crystals is a very popular process used for practical zeolite catalyst applications. Herein, we report a designer crystallization process for nanosized zeolite omega crystals based on the relationship between the crystallization time and temperature in the Arrhenius equation. Compared to the conventional hydrothermal synthesis of zeolite omega(72 h at room temperature and 240 h at 100 °C, MAZ-100), the crystallization of zeolite omega presented in this work only requires a very short time interval(5 h at 180 °C, MAZ-180). Physicochemical characterizations, including XRD, SEM, N_2 sorption isotherms, and ~(27) Al MAS NMR show that the product of zeolite omega(MAZ-180) has good crystallinity and uniform nanocrystals. More importantly, after the loading of Pt nanoparticles(0.5 wt%), the Pt/H-MAZ-180 catalyst exhibits higher isomer selectivity and lower cracking selectivity than those of the Pt/H-MAZ-100 catalyst in the hydroisomerization of n-dodecane. These results suggest the potential applications of these omega nanocrystals as supporting catalyst compounds in industrial processes.
引文
[1]M.E.Davis,Nature,2002,417,813-821.
    [2]C.S.Cundy,P.A.Cox,Chem.Rev.,2003,103,663-702.
    [3]H.Gies,B.Marler,B.Zeolites,1992,12,42-45.
    [4]B.Yilmaz,U.Müller,Top.Catal.,2009,52,888-895.
    [5]X.D.Zou,T.Conradsson,M.Klingstedt,M.S.Dadachov,M.O’Keeffe,Nature,2005,437,716-719.
    [6]J.Shin,M.A.Camblor,H.C.Woo,S.R.Miller,P.A.Wright,S.B.Hong,Angew.Chem.Int.Ed.,2009,48,6647-6649.
    [7]A.Jackowski,S.I.Zones,S.J.Hwang,A.W.Burton,J.Am.Chem.Soc.,2009,131,1092-1100.
    [8]A.Corma,Chem.Rev.,1997,97,2373-2419.
    [9]K.Moller,T.Bein,Chem.Soc.Rev.,2013,42,3689-3707.
    [10]H.Y.Chen,J.Wydra,X.Y.Zhang,P.S.Lee,Z.P.Wang,W.Fan,M.Tsapatsis,J.Am.Chem.Soc.,2011,133,12390-12393.
    [11]X.Y.Zhang,D.X.Liu,D.D.Xu,S.Asahina,K.A.Cychosz,K.V.Agrawal,Y.Al Wahedi,A.Bhan,S.Al Hashimi,O.Terasaki,M.Thommers,M.Tsapatsis,Science,2012,336,1684-1687.
    [12]J.H.Lee,M.B.Park,J.K.Lee,H.K.Min,M.K.Song,S.B.Hong,J.Am.Chem.Soc.,2010,132,12971-12982.
    [13]M.Moliner,J.Gonzalez,M.T.Portilla,T.Willhammar,F.Rey,F.J.Llopis,X.D.Zou,A.Corma,J.Am.Chem.Soc.,2011,133,9497-9505.
    [14]P.S.Lee,X.Y.Zhang,J.A.Stoeger,A.Malek,W.Fan,S.Kumar,W.C.Yoo,S.Al Hashimi,R.L.Penn,A.Stein,M.Tsapatsis,J.Am.Chem.Soc.,2011,133,493-502.
    [15]F.J.Liu,T.Willhammar,L.Wang,L.F.Zhu,Q.Sun,X.J.Meng,W.Carrillo-Cabrera,X.D.Zou,F.-S.Xiao,J.Am.Chem.Soc.,2012,134,4557-4560.
    [16]A.Martucci,A.Alberti,M.L.Guzman-Castillo,F.Di Renzo,F.Fajula,Microporous Mesoporous Mater.,2003,63,33-42.
    [17]E.Flanigen,E.R.Kellberg,US Patent 4 241 036,1980.
    [18]W.A.Erhart,C.E.Rohrer,US Patent 3 578 728,1971.
    [19]B.Coq,F.Figueras,V.Rajaofanova,J.Catal.,1988,114,321-331.
    [20]A.J.Perrotta,C.Kibby,B.R.Mitchell,E.R.Tucci,J.Catal.,1978,55,240-249.
    [21]F.Raatz,C.Travers,C.Marcilly,T.Descourieres,F.Fajula,F.Figueras,US Patent 5 157 198,1991.
    [22]V.Solinas,R.Monaci,B.Marongiu,L.Forni,Appl.Catal.,1983,5,171-177.
    [23]A.M.Coossens,E.J.P.Fejien,G.Verhoeven,B.H.Wouters,P.J.Grobet,P.A.Jacobs,J.A.Martens,Microporous Mesoporous Mater.,2000,35,555-572.
    [24]S.Yang,A.G.Vlessidis,N.P.Evmiridis,Microporous Mesoporous Mater.,1997,9,273-286.
    [25]S.I.Zones,M.L.Occelli,H.Kessler,Marcel Dekker Inc.,1997,93-94.
    [26]F.Fajula,M.Verapacheco,F.Figueras,Zeolites,1987,7,203-208.
    [27]H.Xu,P.Dong,J.G.Wang,F.Deng,J.X.Dong,J.Porous Mater.,2007,14,97-101.
    [28]M.Cui,Y.Wang,X.Y.Liu,J.Zhu,J.B.Sun,N.Lv,C.G.Meng,J.Chem.Technol.Biotechnol.,2014,89,419-424.
    [29]J.H Guo,W.F.Yan,W.Shi,R.R.Xu.Chem.J.Chin.Univ.,2018,39,841-848.
    [30]C.Q.Bian,C.S.Zhang,S.X.Pan,F Chen,W.P.Zhang,X.J.Meng,S.Maurer,D.Dai,A.N.Parvulescu,U.Muller,F.-S Xiao,J.Mater.Chem.A,2017,5,2613-2618.
    [31]Z.C.Yang,Y.Q.Liu,D.D.Liu,X.T.Meng,C.G.Liu.Appl.Catal.A,2017,543,274-282.
    [32]S.Inagaki,T.Yokoi,Y.Kubota,T.Tatsumi,Chem.Commun.,2007,5188-5190.
    [33]A.J.Perrotta,C.Kirby,B.R.Mitchell,E.R.Tucci,J.Catal.,1978,55,240-249.
    [34]P.Massiani,F,Fajula,F.Figueras,J.Sanz,Zeolites,1998,8,332-337.
    [35]T.M.Lv,S.L.Zhang,Z.Feng,F.-S.Wang,S.Q.Zhang,J.Q.Zheng,X.Liu,C.G.Meng,Y.Wang,Cryst.Growth.Des.,2017,17,3940-3947.
    [36]A.M.Gossens,E.J.P.Feijen,G.Verhoeven,B.H.Wouters,P.J.Grobet,P.A.Jacobs,J.A.Martens,Microporous Mesoporous Mater.,2000,35,555-572.
    [37]A.Corma,Catal.Lett.,1993,22,33-52.
    [38]P.Me′riaudeau,V.A.Tuan,V.T.Nghiem,S.Y.Lai,L.N.Hung,C.Naccache,J.Catal.,1997,169,55-66.
    [39]H.Deldari,Appl.Catal.A,2005,293,1-10.
    [40]J.A.Martens,G.Vanbutsele,P.A.Jacobs,J.Denayer,R.Ocakoglu,G.Baron,J.A.Munoz,J.Thybaut,G.B.Marin,Catal.Today,2001,65,111-116.
    [41]E.Blomsma,J.A.Martens,P.A.Jacobs,J.Catal.,1997,165,241-248.
    [42]W.G.Huang,D.D.Li,Y.H.Shi,X.H.Kang,X.B.Meng,K.Wang,W.Z.Dong,H.Nie,C.Li.Chin.J.Catal.,2003,24,651-657.
    [43]J.B.Wang,J.Z.Li,S.T.Xu,Y.C.Zhi,Y.X.Wei,Y.L.He,J.R.Chen,M.Z.Zhang,Q.Y.Wang,W.N.Zhang,X.Q.Wu,X.W.Guo,Z.M.Liu.Chin.J.Catal.,2015,36,1392-1402.
    [44]C.H.Geng,F.Zhang,Z.X.Gao,L.F.Zhou,J.L.Zhou,Catal.Today,2004,93,485
    [45]L.Guo,Y.Fan,X.Bao,G.Shi,H.Liu,J.Catal,2013,301,162-173.
    [46]P.Meriaudeau,V.A.Tuan,V.T.Nghiem,G.Sapaly,C.Naccache,J.Catal,1999,2,435-444.
    [47]X.Chen,X.J Meng,F.-S.Xiao.Chin.J.Catal.,2015,36,797-800.
    [48]S.Y.Liu,J.Ren,H.K.Zhang,E.J.Lv,Y.Yang,Y.W.Li,J.Catal.,2016,335,11-23.
    [49]G.Wang,Q.J.Liu,W.G.Su,X.J.Li,Z.X.Jiang,X.C.Fang,C.R.Han,C.Li,Appl.Catal.A,2008,335,20-27.
    [50]F.Zhang,Y.Liu,Q.Sun,Z.F.Dai,H.Gies,Q.M.Wu,S.X.Pan,C.Q.Bian,Z.J.Tian,X.J.Meng,Y.Zhang,X.D.Zou,X.F.Yi,A.M.Zheng,L.Wang,F.-S.Xiao,Chem.Commun.,2017,53,4942-4945.
    [51]Y.Seo,S.Lee,C.Jo,R.Ryoo,J.Am.Chem.Soc.,2013,135,8806-8809.
    [52]Y.Liu,W.Qu,W.W.Chang,S.X.Pan,Z.J.Tian,X.J.Meng,M.Rigutto,A.van der Made,L.Zhao,X.M.Zheng,F.-S.Xiao,J.Colloid Interface Sci.,2014,418,193-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700