DO浓度对EBPR耦合SND处理低C/N污水的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of DO concentration on the combination of EBPR and SND for low C/N sewage treatment
  • 作者:赵骥 ; 王晓霞 ; 李夕耀 ; 彭永臻 ; 贾淑媛
  • 英文作者:ZHAO Ji;WANG Xiao-xia;LI Xi-yao;PENG Yong-zhen;JIA Shu-yuan;National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology;
  • 关键词:强化生物除磷(EBPR) ; 同步硝化反硝化(SND) ; 短程硝化 ; 聚磷菌(PAOs) ; 聚糖菌(GAOs)
  • 英文关键词:EBPR;;SND;;partial nitrification;;PAOs;;GAOs
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京工业大学国家工程实验室北京市水质科学与水环境科学重点实验室;
  • 出版日期:2018-01-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(51578014);; 北京市教委科技创新平台项目
  • 语种:中文;
  • 页:ZGHJ201801018
  • 页数:9
  • CN:01
  • ISSN:11-2201/X
  • 分类号:122-130
摘要
为了解厌氧/好氧运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步硝化反硝化(SND)的耦合脱氮除磷特性,以实际低C/N(约为3.5)生活污水为处理对象,先通过调控进水C/N考察其对EBPR启动和聚磷菌(PAOs)富集情况的影响,再通过调控好氧段DO浓度考察其对系统脱氮除磷性能、SND率及碳源转化特性的影响.结果表明,DO浓度为2.0mg/L,当进水C/N由3.2提高至7.5并降至3.8时,反应器出水PO_4~(3-)-P浓度由3.9mg/L逐渐降至0.5mg/L以下,且厌氧释磷量(PRA)由3.3mg/L逐渐升高至约30mg/L.此后,当DO浓度逐渐降至约1.0mg/L时,SND现象愈加明显,且其与EBPR耦合使得系统总氮(TN)和PO_4~(3-)-P去除率分别提高至85%和94%.但当DO浓度约为0.5mg/L时,硝化过程进行不完全,亚硝酸盐积累较为明显,耦合系统中存在同步短程硝化反硝化现象.DO浓度为约1.0mg/L时,系统具有最高的脱氮除磷性能.此外,当DO浓度由2.0mg/L降至0.5mg/L时,PAOs较聚糖菌(GAOs)在厌氧内碳源储存中的贡献逐渐减小(PPAO,An由30.3%逐渐降至20.2%),PRA降低约7mg/L.DO浓度为1.0~1.5mg/L最有利于系统厌氧段内碳源PHA的合成.
        This study focused on investigating the nitrogen(N) and phosphorus removal characteristics of a combined enhanced phosphorus removal(EBPR) with simultaneous nitrification and denitrification(SND) process. An anaerobic/aerobic operated sequencing batch reactor(SBR), fed with actual domestic sewage at a low carbon/nitrogen ratio(C/N, around 3.5), was studied firstly for the start-up of EBPR and the enrichment of phosphorus accumulating organisms(PAOs) by adjusting the influent C/N, and lately for the nutrient removal performance, SND efficiency, and carbon sources conversion by adjusting the dissolved oxygen(DO) concentrations at the aerobic stage. Results showed that at DO concentration of around 2.0 mg/L and influent C/N increased from 3.2 to 7.5 and then recovered to 3.8, effluent PO_4~(3-)-P concentration gradually decreased from 3.9 mg/L to below 0.5 mg/L accompanied by the increase of anaerobic phosphorus release amount(PRA) from 3.3 mg/L to approximately 30 mg/L. Hereafter, when DO concentration gradually decreased to about 1.0 mg/L, SND became obvious, and its coupling with EBPR increased the total nitrogen(TN) and PO_4~(3-)-P removal efficiencies to 85% and 94%, respectively. But when the DO concentration was continued decreased to about 0.5 mg/L, nitrification became incomplete and nitrite accumulation became obvious, indicating the existence of simultaneous partial nitrification and denitrification. The results indicated that the combined system has the highest nitrogen and phosphorus removal performance at DO concentration of about 1.0 mg/L. In addition, when DO concentration decreased from 2.0 mg/L to 0.5 mg/L, the contribution of PAOs to the storage of anaerobic intracellular carbon sources(P_(PAO,An)) gradually reduced from 30.3% to 20.2%, resulted in a decrease of PRA for about 7 mg/L. DO concentration of 1.0~1.5 mg/L was the most conducive to the synthesis of carbon source PHA in the anaerobic stage of the combined system.
引文
[1]中华人民共和国环境保护部.2015年中国环境状况公报[R].2015.
    [2]Grocetti G R,Hugenholtz P,Bond P L,et al.Identification of polyphosphate accumulating organisms and design of 16Sr RNAdirected probes for their detection and quantitation[J].Applied and Enviromental Microbiology,2000,66(3):1175–1182.
    [3]Munch E,Lant P,Keller J.Simultaneous Nitrification and Denitrification in Bench-scale Sequencing Batch Reactors[J].Water Research,1996,30(2):277–284.
    [4]Masuda S,Watanabe Y,Ishiguro M.Biofilm Properties and Simultaneous Nitrification and Denitrification in Aerobic Rotating Biological Contactors[J].Water Science and Technology,1991,23(7):1355–1363.
    [5]Rittmann B,Langeland W.Simultaneous Denitrification with Nitrification in Single-channel Oxidation Ditches[J].Journal Water Pollution Control Federation,1985,57(4):300–308.
    [6]赵玲,张之源.复合SBR系统中同步硝化/反硝化现象及其脱氮效果[J].工业用水与废水,2002,(2):4–6.
    [7]Goronszy M,Demoulin G,Newland M.Aerated Denitrification in Full-scale Activated Sludge Facilities[J].Water Science and Technology,1997,35(10):103–110.
    [8]何理,高大文.基于反硝化聚磷菌的颗粒污泥的[J].中国环境科学,2014,34(2):383–389.
    [9]Wang X X,Wang S Y,Xue T L,et al.Treating low carbon/nitrogen(C/N)wastewater in simultaneous nitrificationendogenous denitrification and phosphorous removal(SNDPR)systems by strengthening anaerobic intracellular carbon storage[J].Water Research,2015,77:191–200.
    [10]王晓霞,王淑莹,赵骥,等.厌氧/好氧运行的SNEDPR系统处理低C/N污水的优化运行[J].中国环境科学,2016,36(9):2672–2680.
    [11]Wang X X,Wang S Y,Zhao J,et al.A novel stoichiometries methodology to quantify functional microorganisms in simultaneous nitrification-endogenous denitrification and phosphorous removal(SNEDPR)[J].Water Research,2015,95:319–329.
    [12]方茜,张朝阳,张立秋,等.同时硝化/反硝化除磷工艺稳定性控制研究[J].中国给水排水,2014,40(11):132–135.
    [13]戴娴,彭永臻,王晓霞,等.不同厌氧时间对富集聚磷菌的SNDPR系统处理性能的影响[J].中国环境科学,2016,36(1):92–99.
    [14]苗志加,彭永臻,薛桂松,等.强化生物除磷工艺富集聚磷菌及其微生物菌群分析[J].北京工业大学学报,2013,(5):742-748.
    [15]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:252–354.
    [16]Amann R I,Krumholz L,Stahl D A.Fluorescent-oligonucleotide probing of whole cells for determinative,phylogenetic,and environmental studies in microbiology[J].Journal of Bacteriology,1990,172(2):762–770.
    [17]许松瑜.双泥折流板反硝化除磷工艺硝化菌的FISH检测研究[D].苏州:苏州科技学院环境科学与工程学院,2011.
    [18]Grocetti G R,Hugenholtz P,Bond P L,et al.Identification of polyphosphate accumulating organisms and design of 16Sr RNAdirected probes for their detection and quantitation[J].Applied and Enviromental Microbiology,2000,66(3):1175–1182.
    [19]戴娴,王晓霞,彭永臻,等.进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响[J].中国环境科学,2015,35(9):2636–2643.
    [20]王晓霞,王淑莹,彭永臻,等.EBPR的快速启动及其与同步硝化反硝化耦合实现污水的脱氮除磷[J].中国环境科学,2014,44(6):1278–1284.
    [21]苗志加.强化生物除磷系统聚磷菌的富集反硝化除磷特性[D].北京:北京工业大学,2013.
    [22]Zeng R J,Lemaire R,Yuan Z G,et al.Simultaneous nitrification,denitrification,and phosphorus removal in a lab-scale sequencing batch reactor[J].Biotechnology and Bioengineering,2003,84(2):170–178.
    [23]支霞辉,黄霞,李朋,等.厌氧-好氧-缺氧短程硝化同步反硝化除磷工艺研究[J].环境科学学报,2009,29(9):1806–1812.
    [24]苗志加,薛桂松,翁冬晨,等.不同碳源对EBPR系统厌氧计量学参数的影响[J].化工学报,2012,63(12):4034–4041.
    [25]Coma M,Verawaty M,Pijuan M,et al.Enhancing aerobic granulation for biological nutrient removal from domestic wastewater[J].Bioresource Technology,2012,103(1):101–108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700