南京粉砂三轴压缩过程中的三维孔隙结构演化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of 3D Pore Structure Evolution of Nanjing Silty Sand During the Triaxial Compression
  • 作者:曹剑秋 ; 张巍 ; 肖瑞 ; 梁小龙 ; 许林 ; 李恒震
  • 英文作者:CAO Jian-qiu;ZHANG Wei;XIAO Rui;LIANG Xiao-long;XU Lin;LI Heng-zhen;School of Earth Sciences and Engineering,Nanjing University;Nanjing University(Suzhou)High Technology Research Institute;
  • 关键词:地质工程 ; 南京粉砂 ; 显微CT ; 三轴剪切试验 ; 孔隙结构 ; 三维重构 ; 表征单元体
  • 英文关键词:geological engineering;;Nanjing silty sand;;micro-CT;;triaxial shear test;;pore structure;;3D reconstruction;;representative elementary volume
  • 中文刊名:XAGX
  • 英文刊名:Journal of Earth Sciences and Environment
  • 机构:南京大学地球科学与工程学院;南京大学(苏州)高新技术研究院;
  • 出版日期:2018-07-15
  • 出版单位:地球科学与环境学报
  • 年:2018
  • 期:v.40;No.161
  • 基金:国家自然科学基金项目(41230636,40902076);; 江苏省自然科学基金项目(BK20160366);; 苏州市科技计划项目(SYG201611)
  • 语种:中文;
  • 页:XAGX201804010
  • 页数:10
  • CN:04
  • ISSN:61-1423/P
  • 分类号:129-138
摘要
砂土三轴剪切过程中细观孔隙结构演化与其宏观力学性质之间存在着紧密联系。基于南京大学自主研发的微型三轴仪,对南京粉砂试样进行了三轴剪切试验,利用显微CT扫描,获得了加载过程中试样的三维孔隙结构演化特征。结果表明:试样表现出应变软化-硬化型的应力-应变关系曲线;端部摩擦阻碍试样体积膨胀,发生鼓形区状破坏;试样整体体孔隙率从初始的46.3%减小到40.9%,后增大到43.0%附近,且试样破坏区孔隙率显著增大;统计区状破坏区表征单元体孔隙参数,发现破坏前孔隙被压密消失,孔隙数量减少32.4%,平均孔隙半径减小48.8%,导致孔隙半径分布趋于集中,破坏后破坏区域内出现大量大半径的孔隙;颗粒间错动导致颗粒棱角破碎,使孔隙形状趋于规则。
        A close relationship exists between the evolution of micro pore structure and macro mechanical properties of sand during the triaxial shear test.The micro-triaxial shear apparatus developed by Nanjing University was used to perform the triaxial shear test on Nanjing silty sand;micro-CT scanning was used to obtain the evolution features of 3D pore structure of the specimen during the loading.The results show that the specimen exhibits strain softeninghardening-type characteristic of stress-strain curve;the friction at both ends of the sample impedes the specimen's volume expansion,causing the drum type zone destruction occurring in the specimen;the porosity of specimen decreases from 46.3% to 40.9%,then increases to about43.0%,and the porosity of failure zone increases obviously;according to the pore parameters of representative elementary volume of zone destruction area,the pores are compressed before failure,causing a decrease of the pore number by 32.4%and a decrease of the average pore radius by 48.8%,so that there are a concentration of the distribution of pore radius,and a good amountof pores with large pore radius occur in the post-failure zone;the dislocation of particles makes the edges of the particles broken,causing the pore shape tends to be regular.
引文
[1]周镜.岩土工程中的几个问题[J].岩土工程学报,1999,21(1):2-8.ZHOU Jing.Some Cases in Geotechnical Engineering[J].Chinese Journal of Geotechnical Engineering,1999,21(1):2-8.
    [2]朱建群,孔令伟,钟方杰.南京砂强度特征与静态液化现象分析[J].岩土力学,2008,29(6):1461-1465,1470.ZHU Jian-qun,KONG Ling-wei,ZHONG Fang-jie.Analysis of Strength Characteristics of Nanjing Sand and Mechanism of Static Liquefaction[J].Rock and Soil Mechanics,2008,29(6):1461-1465,1470.
    [3]朱建群,孔令伟,钟方杰.粉粒含量对砂土强度特性的影响[J].岩土工程学报,2007,29(11):1647-1652.ZHU Jian-qun,KONG Ling-wei,ZHONG Fang-jie.Effect of Fines Content on Strength of Silty Sands[J].Chinese Journal of Geotechnical Engineering,2007,29(11):1647-1652.
    [4]胡中华,王瑞,庄海洋,等.饱和南京砂液化后循环加载的动力表观黏度分析[J].岩土工程学报,2016,38(增2):149-154.HU Zhong-hua,WANG Rui,ZHUANG Hai-yang,et al.Apparent Kinetic Viscosity of Saturated Nanjing Sand Due to Liquefaction-induced Large Deformation in Torsional Shear Tests[J].Chinese Journal of Geotechnical Engineering,2016,38(S2):149-154.
    [5]MITCHELL J K,SOGA K.Fundamentals of Soil Behavior[M].New York:John Wiley and Sons,2005.
    [6]史琳,许然,许强辉,等.基于显微CT技术的结焦砂三维孔隙结构精细表征[J].清华大学学报:自然科学版,2016,56(10):1079-1084.SHI Lin,XU Ran,XU Qiang-hui,et al.Advanced Characterization of Three-dimensional Pores in Coking Sand by Micro-CT[J].Journal of Tsinghua University:Science and Technology,2016,56(10):1079-1084.
    [7]张佳瑞,王金满,秦倩,等.基于CT扫描的煤矿排土场土壤孔隙三维多重分形特征[J].土壤通报,2017,48(4):786-793.ZHANG Jia-rui,WANG Jin-man,QIN Qian,et al.Three-dimensional Multi-fractal Characteristics of Reconstruction Soil Pore at Opencast Coal Mine Dump Based on CT Scanning[J].Chinese Journal of Soil Science,2017,48(4):786-793.
    [8]刘治清,宋晶,杨玉双,等.饱和细粒土固结过程的三维孔隙演化特征[J].工程地质学报,2016,24(5):931-940.LIU Zhi-qing,SONG Jing,YANG Yu-shuang,et al.Three-dimensional Pores Evolution Characteristics During Consolidation Process of Saturated Fine-grained Soil[J].Journal of Engineering Geology,2016,24(5):931-940.
    [9]刘治清,宋晶,李学,等.饱和细粒土固结过程中矿物组分与有机质的三维表征[J].工程地质学报,2017,25(5):1299-1306.LIU Zhi-qing,SONG Jing,LI Xue,et al.Three-dimensional Characterization of Mineral and Organic Compositions in Process of Consolidation of Saturated Fine-grained Soil[J].Journal of Engineering Geology,2017,25(5):1299-1306.
    [10]张巍,梁小龙,唐心煜,等.显微CT扫描南京粉砂空间孔隙结构的精细化表征[J].岩土工程学报,2017,39(4):683-689.ZHANG Wei,LIANG Xiao-long,TANG Xin-yu,et al.Fine Characterization of Spatial Pore Structure of Nanjing Silty Sand Using Micro-CT[J].Chinese Journal of Geotechnical Engineering,2017,39(4):683-689.
    [11]刘向君,熊健,梁利喜,等.基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J].地球物理学进展,2017,32(3):1019-1028.LIU Xiang-jun,XIONG Jian,LIANG Li-xi,et al.Study on the Characteristics of Pore Structure of Tight Sand Based on Micro-CT Scanning and Its Influence on Fluid Flow[J].Progress in Geophysics,2017,32(3):1019-1028.
    [12]田威,裴志茹,韩女.基于CT扫描与3D打印技术的岩体三维重构及力学特性初探[J].岩土力学,2017,38(8):2297-2305.TIAN Wei,PEI Zhi-ru,HAN Nu.A Preliminary Research on Three-dimensional Reconstruction and Mechanical Characteristics of Rock Mass Based on CT Scanning and 3D Printing Technology[J].Rock and Soil Mechanics,2017,38(8):2297-2305.
    [13]李晓宁,向铭铭,朱宝龙.CT技术在岩土工程研究中的应用[J].实验技术与管理,2016,33(11):80-83.LI Xiao-ning,XIANG Ming-ming,ZHU Bao-long.Application of CT Technology to Geotechnical Engineering[J].Experimental Technology and Management,2016,33(11):80-83.
    [14]HIGO Y,OKA F,SATO T,et al.Investigation of Localized Deformation in Partially Saturated Sand Under Triaxial Compression Using Microfocus X-ray CT with Digital Image Correlation[J].Soils and Foundations,2013,53(2):181-198.
    [15]HALL S A,BORNERT M,DESRUES J,et al.Discrete and Continuum Analysis of Localised Deformation in Sand Using X-rayμCT and Volumetric Digital Image Correlation[J].Geotechnique,2010,60(5):315-322.
    [16]CHARALAMPIDOU E M,HALL S A,STANCHITS S,et al.Characterization of Shear and Compaction Bands in a Porous Sandstone Deformed Under Triaxial Compression[J].Tectonophysics,2011,503(1/2):8-17.
    [17]庞旭卿,胡再强,李宏儒,等.黄土剪切损伤演化及其力学特性的CT-三轴试验研究[J].水利学报,2016,47(2):180-188.PANG Xu-qing,HU Zai-qiang,LI Hong-ru,et al.Structure Damage Evolution and Mechanical Properties of Loess by CT-triaxial Test[J].Shuili Xuebao,2016,47(2):180-188.
    [18]李小春,曾志姣,石露,等.岩石微焦CT扫描的三轴仪及其初步应用[J].岩石力学与工程学报,2015,34(6):1128-1134.LI Xiao-chun,ZENG Zhi-jiao,SHI Lu,et al.Triaxial Apparatus for Micro-focus CT Scan of Rock and Its Preliminary Application[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1128-1134.
    [19]朱宝龙,巫锡勇,李晓宁,等.合肥地区重塑黏性土细观结构演化三轴CT试验[J].西南交通大学学报,2015,50(1):144-149.ZHU Bao-long,WU Xi-yong,LI Xiao-ning,et al.Triaxial CT Tests of Meso-structure Evolution of Remodeled Cohesive Soil in Hefei[J].Journal of Southwest Jiaotong University,2015,50(1):144-149.
    [20]朱建群.含细粒砂土的强度特征与稳态性状研究[D].北京:中国科学院研究生院,2007.ZHU Jian-qun.Strength Properties and Steady-state Behavior of Sandy Soil[D].Beijing:Graduate University of Chinese Academy of Science,2007.
    [21]苏金明,王永利.MATLAB7.0实用指南[M].北京:电子工业出版社,2004.SU Jin-ming,WANG Yong-li.Practical Guide of MATLAB7.0[M].Beijing:Electronic Industry Press,2004.
    [22]马礼敦,杨福家.同步辐射应用概论[M].上海:复旦大学出版社,2001.MA Li-dun,YANG Fu-jia.Introduction to Synchrotron Radiation Applications[M].Shanghai:Fudan University Press,2001.
    [23]王继庄.粗粒料的变形特性和缩尺效应[J].岩土工程学报,1994,16(4):89-95.WANG Ji-zhuang.Deformation and Scale Effect of Coarse-grained Material[J].Chinese Journal of Geotechnical Engineering,1994,16(4):89-95.
    [24]朱俊高,刘忠,翁厚洋,等.试样尺寸对粗粒土强度及变形试验影响研究[J].四川大学学报:工程科学版,2012,44(6):92-96.ZHU Jun-gao,LIU Zhong,WENG Hou-yang,et al.Study on Effect of Specimen Size upon Strength and Deformation Behaviour of Coarse-grained Soil in Triaxial Test[J].Journal of Sichuan University:Engineering Science Edition,2012,44(6):92-96.
    [25]朱逢斌,陈甦,孙雷江,等.自制砂雨装置填砂装样质量分析[J].地下空间与工程学报,2013,9(增2):2076-2078,2092.ZHU Feng-bin,CHEN Su,SUN Lei-jiang,et al.Quality Analysis of Sand Filling by the Self-made Pluviation Device[J].Chinese Journal of Underground Space and Engineering,2013,9(S2):2076-2078,2092.
    [26]程朋,王勇,李雄威,等.砂雨法制备三轴砂样的影响因素及均匀性研究[J].长江科学院院报,2016,33(10):79-83,92.CHENG Peng,WANG Yong,LI Xiong-wei,et al.Factors and Homogeneity of Triaxial Sand Specimens Preparation with Air Pluviation[J].Journal of Yangtze River Scientific Research Institute,2016,33(10):79-83,92.
    [27]朱建群,孔令伟,高文华,等.南京砂的稳态特征研究[J].岩土工程学报,2012,34(5):931-935.ZHU Jian-qun,KONG Ling-wei,GAO Wen-hua,et al.Steady-state Properties of Nanjing Sand[J].Chinese Journal of Geotechnical Engineering,2012,34(5):931-935.
    [28]李广信.高等土力学[M].北京:清华大学出版社,2004.LI Guang-xin.Advanced Soil Mechanics[M].Beijing:Tsinghua University Press,2004.
    [29]BISHOP A W.Progressive Failure with Special Reference to Mechanism Causing It[C]∥Norwegian Geotechnical Institute.Proceedings of the Geotechnical Conference.Oslo:Norwegian Geotechnical Institute,1967:142-150.
    [30]周创兵,陈益峰,姜清辉.岩体表征单元体与岩体力学参数[J].岩土工程学报,2007,29(8):1135-1142.ZHOU Chuang-bing,CHEN Yi-feng,JIANG Qinghui.Representative Elementary Volume and Mechanical Parameters of Fractured Rock Masses[J].Chinese Journal of Geotechnical Engineering,2007,29(8):1135-1142.
    [31]陈云娟,朱维申,王知深,等.裂隙岩体表征单元体的确定及工程应用[J].地下空间与工程学报,2016,12(1):25-29.CHEN Yun-juan,ZHU Wei-shen,WANG Zhi-shen,et al.Determination of Representative Elementary Volume of Fractured Rock Mass and Its Engineering Application[J].Chinese Journal of Underground Space and Engineering,2016,12(1):25-29.
    [32]王合明.多孔介质孔隙结构的分形特征和网络模型研究[D].大连:大连理工大学,2013.WANG He-ming.The Study on Fractal Characteristics and Net-work Model of Pore-structure of Porous Media[D].Dalian:Dalian University of Technology,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700