后掠机翼的横流不稳定性分析及转捩预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cross-flow Instability Analysis and Transition Prediction of Swept Wing
  • 作者:刘坤坤 ; 阎超 ; 郝子辉
  • 英文作者:LIU Kun-kun;YAN Chao;HAO Zi-hui;Beijing Aerospace Technology Institute;School of Aeronautic Science and Engineering, Beihang University;Beijing Institute of Electronic System Engineering;
  • 关键词:转捩模式 ; 横流不稳定性 ; 后掠机翼
  • 英文关键词:transition model;;cross-flow instability;;swept wing
  • 中文刊名:QTWL
  • 英文刊名:Physics of Gases
  • 机构:北京空天技术研究所;北京航空航天大学航空科学与工程学院;北京电子工程总体研究所;
  • 出版日期:2017-09-15
  • 出版单位:气体物理
  • 年:2017
  • 期:v.2;No.11
  • 基金:国家自然科学基金(11402016)
  • 语种:中文;
  • 页:QTWL201705003
  • 页数:7
  • CN:05
  • ISSN:10-1384/O3
  • 分类号:20-26
摘要
后掠机翼边界层的流动稳定性及转捩对翼型的设计及优化有着重要的参考价值,而横流失稳是引起后掠机翼边界层转捩的关键因素之一.以NLF(2)-0415翼型为研究对象,采用三维可压缩Navier-Stokes方程并结合γ-Re_(θt)转捩模式计算了展向无限长后掠机翼的基本流场.由于原始γ-Re~(θt)模式只能预测流向边界层转捩,因此在原始转捩模式中添加横流间歇因子项,进而对复杂构型进行横流不稳定性转捩预测.计算结果显示,利用改进后γ-Re_(θt)转捩模式预测得到的后掠翼型的转捩位置与实验数据吻合较好,证明了修正的转换模式的合理性和实用性.
        The stability and transition of swept wing boundary layers have important reference value to the design and optimization of airfoil. The cross-flow instability is one of the key parameters for boundary layer transition. Based on the NLF( 2)-0415 airfoil profile, the mean flow of the swept-wing boundary layer was calculated by numerically solving the three-dimensional compressible Navier-Stocks equation with γ-Re~(θt) transition model. Considering the original transition model could only predict the transition along streamwise, cross-flow intermittency factor was established to the original transition model to conduct the numerical simulation of cross-flow instabilities transition for complex configuration. The numerical results show that the improved transition model could predict the location of cross-flow instability transition of swept wing which is in good agreement with the test data. Therefore, improved transition model is reasonable and practical.
引文
[1]朱自强,吴宗成,丁举春.层流流动控制技术及应用[J].航空学报,2011,32(5):765-784.Zhu Z Q,Wu Z C,Ding J C.Laminar flow control technology and application[J].Acta Aeronautica et Astronautica Sinica,2011,32(5):765-784(in Chinese).
    [2]Wu X S,Stewart P A,Cowley S J.On the weakly nonlinear development of Tollmi-en-Schlichting wavetrains in boundary layers[J].Journal of Fluid Mechanics,1996,323:133-171.
    [3]Abu-Ghannam B J,Shaw R.Natural transition of boundary layers-the effects of turbulence,pressure gradient,and flow history[J].Journal of Mechanical Engineering Science,1980,22(5):213-228.
    [4]Lau K Y.Hypersonic boundary-layer transition:application to high-speed vehicle design[J].Journal of Spacecraft and Rockets,2008,45(2):176-183.
    [5]Drela M,Giles M B.Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J].AIAA Journal,1987,25(10):1347-1355.
    [6]Langtry R B,Menter F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal,2009,47(12):2894-2906.
    [7]Walters D K,Cokljat D.A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J].Journal of Fluids Engineering,2008,130(12):121401.
    [8]Warren E S,Hassan H A.Transition closure model for predicting transition onset[J].Journal of Aircraft,1998,35(5):769-775.
    [9]Wang L,Fu S.Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J].Flow,Turbulence and Combustion,2011,87(1):165-187.
    [10]Seyfert C,Krumbein A.Correlation-based transition transport modeling for three-dimensional aerodynamic configuration[R].AIAA 2012-0448,2012.
    [11]Grabe C,Krumbein A.Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J].Journal of Aircraft,2013,50(5):1533-1539.
    [12]Medida S,Baeder J D.A new crossflow transition onset criterion for RANS turbulence models[R].AIAA 2013-3081,2013.
    [13]Müller C,Herbst F.Modelling of crossflow-induced transition based on local variables[C].6thEuropean Conference on Computational Fluid Dynamics(ECFD),2014.
    [14]Choi J H,Kwon O J.Enhancement of a correlation-based transition turbulence model for simulating crossflow instability[R].AIAA 2014-1133,2014.
    [15]Bippes H.Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability[J].Progress in Aerospace Sciences,1999,35(4):363-412.
    [16]周恒,赵耕夫.流动稳定性[M].北京:国防工业出版社,2004.Zhou H,Zhao G F.Hydrodynamic stability[M].Beijing:National Defence Industry Press,2004(in Chinese).
    [17]Malik M R,Li F,Chang C L.Crossflow disturbances in three-dimensional boundary layers:nonlinear development,wave interaction and secondary instability[J].Journal of Fluid Mechanics,1994,268:1-36.
    [18]White E B,Saric W S.Secondary instability of crossflow vortices[J].Journal of Fluid Mechanics,2005,525:275-308.
    [19]Hao Z H,Yan C,Zhou L,et al.Development of a boundary layer parameters identification method for transition prediction with complex grids[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2016.
    [20]Dagenhart J R,Saric W S.Crossflow stability and transition experiments in swept-wing flow[R].NASA TP1999-209344,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700