离子液体润滑下非晶碳膜的载流摩擦磨损行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current-carrying Friction and Wear Behavior of the Amorphous Carbon Film Lubricated by Ionic Liquid
  • 作者:刘秀芳 ; 李霞 ; 张广安 ; 眭剑
  • 英文作者:LIU Xiu-fang;LI Xia;ZHANG Guang-an;SUI Jian;School of Chemistry and Chemical Engineering, Yibin University;State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences;
  • 关键词:非晶碳膜 ; 离子液体 ; 固液复合润滑 ; 载流摩擦 ; 磨损机理
  • 英文关键词:amorphous carbon film;;ionic liquid;;solid-liquid composite lubrication;;current-carrying friction;;wear mechanism
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:宜宾学院化学与化工学院;中科院兰州化学物理研究所固体润滑国家重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学青年基金项目(51505419);; 宜宾学院博士启动基金项目(2013QD12)~~
  • 语种:中文;
  • 页:BMJS201905030
  • 页数:7
  • CN:05
  • ISSN:50-1083/TG
  • 分类号:206-212
摘要
目的考察非晶碳膜(amorphous carbon film,a-C)在干摩擦和在离子液体(IL)润滑下的载流摩擦磨损行为特点。方法选取不锈钢、涂覆离子液体的不锈钢、a-C薄膜和涂覆离子液体的a-C薄膜(a-C-IL)分别与不锈钢小球对磨,在直流电流为0.2 A的条件下进行摩擦磨损测试,对比了各种试样的摩擦学行为。通过扫描电镜、表面三维轮廓仪和拉曼光谱对磨痕和磨斑进行分析表征,并讨论各种摩擦副的磨损机制。结果非晶碳膜与离子液体均能有效地降低钢-钢摩擦副在载流条件下的摩擦系数,使得稳定摩擦系数从~0.8分别降低到~0.2和~0.15。当a-C膜与IL进行复合后,进一步降低了a-C膜的载流摩擦系数(~0.1),但是a-C膜的耐磨性能降低。结论在载流摩擦磨损测试下,钢-钢摩擦副的摩擦系数大,磨损严重,伴随轻微的粘着磨损;离子液体可以明显减小摩擦副之间的粘着,降低钢-钢摩擦副的摩擦系数和磨损率。在钢基底上镀a-C薄膜,摩擦过程中a-C磨屑形成的转移膜发生了石墨化,能显著降低摩擦系数,减小磨损率。a-C-IL固液复合薄膜具有比a-C膜更低的载流摩擦系数,但其耐磨性能不如a-C膜。
        The work aims to investigate the current-carrying friction and wear behaviors of the amorphous carbon(a-C) film in both dry friction and ionic liquid(IL) lubricated conditions. The friction tests were carried by grinding stainless steel, steel coated with IL, a-C film and a-C film coated with IL(a-C-IL) with stainless steel balls under direct current of 0.2 A to compare the friction behaviors of various samples. The wear traces and wear scars of the samples were characterized by scanning electron microscopy, surface 3 D profiler and Raman spectrum, and the wear mechanisms of the friction pairs were discussed. Both the a-C film and IL could effectively decrease the current-carrying friction coefficient of the steel-steel friction pair, and reduce the steady friction coefficient values to ~0.15 and ~0.20 from ~0.8, respectively. The composite lubrication of the a-C and IL further decreased the current-carrying friction coefficient(~0.1), but the wear resistance decreased accordingly. The friction coefficient of the steel-steel friction pair is high and the wear is severe. The mechanism is severe abrasive wear with slight adhesion wear.The IL lubrication can obviously reduce the friction coefficient and wear rate of steel-steel friction pair, and the wear mechanism is acceptable abrasive wear. The a-C film can provide good lubrication and wear resistance for the electrical contact material in dry friction. In the current-carrying friction process, the formed transfer film by the a-C wear debris is graphitization and the mechanism of the a-C films is slight abrasive wear. The friction coefficient of the a-C-IL solid-liquid composite lubrication coating is lower than that of a-C film, but the wear resistance is weaker. In friction process, the surface structure of the a-C is broken, and the generated wear debris mixed with the IL can form a solid-liquid composite lubrication coating, which can reduce the friction force, but is easily extruded out of the friction contact zone. Therefore, a steady solid-liquid composite lubrication coating needs to be reconstructed with more wear debris worn off from the a-C film to increase the wear rate.
引文
[1]张永振,宋克兴,杜三明,等.载流摩擦学[M].北京:科学出版社,2016:182-231.ZHANG Yong-zhen,SONG Ke-xing,DU San-ming,et al.Current carrier tribology[M].Beijing:Science press,2016:182-231.
    [2]李镇隆,梁江,王肖铮,等.自润滑电接触材料与电刷滑环元件[J].电工材料,2008(1):25-27.LI Zhen-long,LIANG Jiang,WANG Xiao-zheng,et al.Self-lubricating electrical contact material and brush slip ring element[J].Electrical engineering materials,2008(1):25-27.
    [3]崔春翔,赵晓宏,徐华,等.碳纤维-铜复合材料研究[J].河北工业大学学报,2002,31(6):43-48.GUI Chun-xiang,ZHAO Xiao-hong,XU Hua,et al.Study and development of carbon fiber reinforced copper matrix coposites[J].Journal of Hebei University of Technology,2002,31(6):43-48.
    [4]张雷,周科朝,刘文胜.梯度结构Ag-Cu-Mo S2电刷材料的制备及性能[J].中国有色金属学报,2005,15(11):1766-1769.ZHANG Lei,ZHOU Ke-chao,LIU Wen-sheng,et al.Preparation and properties of Ag-Cu-MoS2 brush materials[J].The chinese journal of nonferrous metals,2005,15(11):1766-1769.
    [5]袁青,李兵虎,童文俊,等.铜石墨复合材料改性研究进展[J].材料导报,2004(11):47-49.YUAN Qing,LI Bing-hu,TONG Wen-jun,et al.Progress of studying modifying copper/graphite composite[J].Materials review,2004(11):47-49.
    [6]钱刚,凤仪,张学斌.铜基自润滑电接触复合材料研究综述[J].表面技术,2016,45(1):7-12.QIAN Gang,FENG Yi,ZHANG Xue-bin,et al.Review on research of Cu-based self-lubricating electrical contact composites[J].Surface technology,2016,45(1):7-12.
    [7]ERDEMIR A,ERYILMAZ O L,NILUFER I B,et al.Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas[J].Surface and coatings technology,2000,133-134:448-454.
    [8]WANG Y,WANG L,XUE Q.Improving the tribological performances of graphite-like carbon films on Si3N4 and Si C by using Si interlayers[J].Applied surface science,2011,257:10246-10253.
    [9]BABA K,HATADA R.Preparation and properties of metal containing diamond-like carbon films by magnetron plasma source ion implantation[J].Surface and coatings technology,2002,158-159:373-376.
    [10]LIU X,WANG L,XUE Q.Surface composition variation and high-vacuum performance of DLC/ILs solid-liquid lubricating coatings:Influence of space irradiation[J].Applied surface science 2012,258(20):8289-8297.
    [11]GAHR K H M,MATHIEU M,BRYLKA B.Friction control by surface engineering of ceramic sliding pairs in water[J].Wear,2007,263(7-12):920-929.
    [12]LIU X,WANG L,XUE Q.A novel carbon-based solidliquid duplex lubricating coating with super-high tribological performance for space applications[J].Surface and coatings technology,2011,205(8/9):2738-2746.
    [13]宇文飞燕,闻小琴,张武,等.自配副铜的离子液体-化学镀银膜复合润滑[J].表面技术,2018,47(6):145-150.YUWEN Fei-yan,WEN Xiao-qin,ZHANG Wu,et al.Synergistic lubrication of self-mated Cu by ionic liquidelectroless Ag film[J].Surface technology,2018,47(6):145-150.
    [14]VENIER C G,CASSERLY E W,Lubricants comprising novel cyclopentanes cyclopentadienes,cyclopentenes and mixtures thereof and methods of manufacture:United States,5,012,023[P].1991.
    [15]PISCANEC S,MAURI F,FERRARI A C,et al.Ab initio resonant raman spectra of diamond-like carbons[J].Diamond and related materials,2005,14:1078-1083.
    [16]CHU P K,LI L,Characterization of amorphous and nanocrystalline carbon films[J].Materials chemistry and physics,2006,96:253-277.
    [17]PARK S J,KIM J K,LEE K R,et al.Humidity dependence of the tribological behavior of diamond-like carbon films against steel ball[J].Diamond and related materials,2005,12(9):1517-1523.
    [18]RONKAINEN H,VARJUS S,KOSKINEN J,et al.Differentiating the tribological performance of hydrogenated and hydrogen-free DLC coatings[J].Wear,2001,249(3-4):260-266.
    [19]SáNCHEZ-LóPEZ J C,ERDEMIR A,DOMMET C,et al.Friction-induced structure transformations of diamondlike carbon coatings under various atmospheres[J].Surface and coatings technology,2003,163-164:444-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700