厄立特里亚Koka金矿床成矿流体特征及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of ore-forming fluids of Koka gold deposit in Eritrea and their geological significances
  • 作者:赵凯 ; 姚华舟 ; 王建雄 ; 向文帅 ; Ghebsha ; Fitwi ; Ghebretnsae
  • 英文作者:ZHAO Kai;YAO HuaZhou;WANG JianXiong;XIANG WenShuai;Ghebsha Fitwi Ghebretnsae;Wuhan Center,China Geological Survey;College of Silk Road, China University of Geosciences;
  • 关键词:地球化学 ; 成矿流体 ; 流体包裹体 ; 不混溶 ; Koka金矿 ; 厄立特里亚
  • 英文关键词:geochemistry;;ore-forming fluid;;fluid inclusion;;immiscibility;;Koka gold deposit;;Eritrea
  • 中文刊名:KCDZ
  • 英文刊名:Mineral Deposits
  • 机构:中国地质调查局武汉地质调查中心;中国地质大学丝绸之路学院;
  • 出版日期:2018-12-15
  • 出版单位:矿床地质
  • 年:2018
  • 期:v.37
  • 基金:中国地质调查局项目“埃及及邻区矿产资源潜力评价”(编号:DD20160109)项目资助
  • 语种:中文;
  • 页:KCDZ201806012
  • 页数:12
  • CN:06
  • ISSN:11-1965/P
  • 分类号:194-205
摘要
厄立特里亚Koka金矿床产于努比亚地盾新元古代浅变质岩系中,矿体主要赋存于Koka微晶花岗岩内,受剪切构造控制,是在该国发现的大型造山型金矿床。矿床含金石英脉中石英中赋存的原生流体包裹体分为富CO_2包裹体、CO_2-H_2O包裹体和H_2O包裹体共3种类型,以大量发育富CO_2包裹体与CO_2-H_2O包裹体为特征。成矿流体具有富CO_2、中低温(210~360℃)、中低盐度(w(NaCl_(eq))=2.24%~8.51%)的特征。流体中阳离子主要为Na~+与少量K~+,阴离子为Cl~-与少量SO_4~(2-),气相成分主要为CO_2与H_2O,基本不含其他气体组分,流体属于NaCl-H_2O-CO_2体系。成矿流体密度变化范围较大(0.597~0.969 g/cm~3),其中高密度的富CO_2包裹体捕获的最小P-T条件为260~360℃、100~270 MPa,形成于区域变质作用时期。成矿流体的δD_(V-SMOW)范围为-57‰~-50.1‰,δ~(18)O_水范围为1.4‰~3.2‰,表明Koka金矿床成矿流体主要来源于变质热液,并伴有大气降水的混入。成矿流体中CO_2-H_2O包裹体气相分数变化范围很大(15%~80%),与之共生的H_2O包裹体具有相似的盐度以及较低的均一温度,表明初始的CO_2-H_2O型流体发生了不混溶作用,导致相分离,产生的大量富CO_2流体,并使金大量沉淀。
        Located in the metamorphic strata of the Nubian Shield, the Koka gold deposit is a large orogenic gold deposit in Eritrea. The orebody hosts in the Koka aplitic granite, controlled by shear structure. The primary fluid inclusions in gold-bearing quartz veins can be divided into three types, i. e., extremely CO_2-rich inclusions, CO_2-H_2O inclusions and H_2O inclusions, with CO_2-rich inclusions and CO_2-H_2O inclusions being dominant. The oreforming fluid is characterized by rich CO_2, medium-low temperature(210~360℃) and low salinity(w(NaCleq)=2.24%~8.51%). In the liquid phase components, the cations mainly include Na+and a little K+, the anions contain Cl-and a little SO_4~(2-), the gaseous content of the fluid inclusion is primarily CO_2 and secondly H_2O, almost without any other gaseous content, and the fluids belong to NaCl-H2O-CO_2 system. The density of ore-forming fluid has a large variation(0.597~0.969 g/cm3), and the trapping P-T conditions of CO_2-rich inclusions characterized by high density can be estimated to be 260~360℃ and 100~270 MPa, usually formed in regional metamorphism period.δDV-SMOWof the fluid is between-57‰ and-50.1‰, whereas δ~(18)O_(H_2O) of the fluid is between 1.4‰ and 3.2‰,which suggests that the source of the ore-forming fluid for Koka gold deposit came mainly from metamorphic water mixed with meteoric water. The filling degree of CO_2-H_2O inclusions has a large variation(15%~80%), and symbiotic H_2O inclusions have similar salinities and lower uniformity temperature, indicating that the original CO_2-H_2O fluid experienced fluid immiscibility, which resulted in the phase separation that formed a mass of CO_2-rich fluid and caused gold precipitation.
引文
Andersson U B,Ghebreab W and Teklay M.2006.Crustal evolution and metamorphism in east-central Eritrea,South-East Arabian-Nubian Shield[J].Journal of African Earth Sciences,44:45-65.
    Clayton J and Tretiak D N.1972.Amine-citrate buffers for pH control in starch gel electrophoresis[J].Journal of the Fisheries Board of Canada,29(8):1169-1172.
    Cao l,Duan Q F,Peng S G and Zhou Y.2015.Characteristics of fluid inclusions in the Chanziping gold deposit in western Hunan province and their geological implications[J].Geology and Exploration,51(2):212-224(in Chinese with English abstract).
    Chen Y J,Ni P,Fan H R,Prajno F,Lai Y,Su W C and Zhang H.2007.Diagnostic fluid inclusions of different types hydrothermal gold deposits[J].Acta Petrologica Sinica,23(9):2085-2108(in Chinese with English abstract).
    Chi G X,DubéB,Williamson K and Williams-Jones A E.2006.Formation of the Campbell-Red Lake gold deposit by H2O-poor,CO2-dominated fluids[J].Mineralium Deposita,40(6-7):726-741.
    Coulibaly Y,Boiron M C,Cathelineau M and Kouamelan A N.2008.Fluid immiscibility and gold deposition in the Birimian quartz veins of the Angovia deposit[J].Journal of African Earth Sciences,50(2-4):234-254.
    Dean C,David L and David G.2010.Technical report on the Koka gold project,Eritea[R].Chalice Gold Mines Limied.1-111.
    Ghebreab W,Reinhard O G and Semere S.2009.Structural setting of Neoproterozoic mineralization,Asmara district,Eritrea[J].Journal of African Earth Sciences,55(5):219-35.
    Goldfarb G J,Groves D I and GardollS.2001.Orogenic gold and geologic time:A global synthesis[J].Ore Geology Reviews,18:12-75.
    Goldfarb R J.2004.The late Cretaceous Donlin Creek gold deposit,southwestern Alaska:Controls on epizonal ore formation[J].Econ.Geol.,99(4):643-671.
    Goldfarb R,Baker T,Dube B,Grove D I,Hart C J R and Gosselin P.2005.Distribution,character and genesis of gold deposits in metamorphic terranes[C].In:Economic geology 100th Anniversary volume.Littleton:Society of Economic Geologists.7-450.
    Groves D I,Goldfarb R J,Gebre-Mariam M,Hagemann S G and Robert F.1998.Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J].Ore Geology Reviews,13(1):7-27.
    Groves D I,Goldfarb R J and Robert F.2003.Gold deposits in metamorphic belts:Overview of current understanding,outstanding problems,future research,and exploration significance[J].Econ.Geol.,98(1):1-29.
    Hagemann S G,Groves D I,Ridley J R and Vearncombe J R.1992.The Archean lode gold deposits at Wiluna,Western-AustraliaHigh-Level Brittle-Style mineralization in a strike-slip Regime[J].Geology and the Bulletin of the Society of Economic Geologists,87(4):1022-1053.
    Hagemann S G and Lüders V.2003.P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits,western Australia:Conventional and infrared microthermometric constraints[J].Mineralium Deposita,38(8):936-952.
    Hall D L,Stemer S M and Bodnar R J.1988.Freezing point depression of NaCl-KCl-H2O solutions[J].Econ.Geol.,83:197-202.
    Johnson P R,Zoheir B A,Ghebreab W,Stern R J,Barrie C T and Hamer R D.2017.Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield[J].South African Journal of Geology,120(1):63-76.
    Kr?ner A,Eyal M and Eyal Y.1990.Early Pan-African evolution of the basement around Elat,Israel and the Sinai Peninsula revealed by single-zircon evaporation dating and implication for crustal accretion rates[J].Geology,18(6):545-548.
    Li H and Hu J Y.2012.Geochemical characteristics and genesis of Hamadi gold deposit in Sudan[J].Contributions to Geology and Mineral Resources Research,27(2):222-226(in Chinese with English abstract)
    McCuaig C T,Kerrich R.1998.P-T-t-deformation-fluid characteristics of lode gold deposits:Evidence from alteration systematics[J].Ore Geology Reviews,12(6):381-453.
    Phillips G N and Powell R.2010.Formation of gold deposits:A metamorphic devolatilization model[J].Joumal of Metamorphic Geology,28(6):689-718.
    Ridley J R and Diamond L W.2000.Fluid chemistry of orogenic lode gold deposits and implications for genetic models[J].Reviews in Economic Geology,13:141-162.
    Roedder E.1984.Fluid inclusions.Review in mineralogy 12,Mineralogical Society of America[M].Mineral Society of America,12:1-644.
    Shepherd T J,Rankin A H and Alderton D H M.1985.A practical guide to fluid inclusion dtudies[M].Blackie:Chapman&Hall.1-239.
    Stern R J.1994.Neoproterozoic(900-550 Ma)arc assembly and continental collision in the east Africa orogen:implications for the consolidation of Gondwanaland[J].Annual Review of Earth&Planetary Sciences,22:319-351.
    Tang P,Chen Y C,Tang J X,Zheng W B,Leng Q F and Lin B.2017.Astudy of fluid inclusions from Lakang’e porphyry Cu-Mo deposit in Tibet[J].Mineral Deposits,36(1):68-82(in Chinese with English abstract).
    Taylor H P.1979.Oxygen and hydrogen isotope relationships[A].In:Barnes H L,ed.Geochemistry of hydrothermal ore deposits[C].New York:John Wiley and Sons.236-277.
    Teklay M.1997.Petrology,geochemistry and geochronology of Neoproterozoic magmatiic arc rocks from Eritrea:Implications for crustal evolution in the southern Nubian Shield[M].Department of Mines,Eritrea Memoir no.1,1-125.
    Teklay M.2006.Neoproterozoic arc-back-arc system analog to modern arc-back-arc systems:Evidence from tholeiite-boninite association,serpentinite mudflows and across-arc geochemical trends in Eritrea,southern Arabian-Nubian shield[J].Precambrian Research,145:81-92
    Van den Kerkhof A and Thiéry R.2001.Carbonic inclusions[J].Lithos,55(1-4):49-68.
    Wei H,Xu J H,Wang J X,Zhang G R,Zhang H and Xu Q Y.2015.Tectonic evolution and gold mineralization in the Arabian Nubian Shield(ANS),northeastern Africa[J].Geology and Exploration,51(2):383-394(in Chinese with English abstract).
    Winter J D.2001.An introduction to igneous and metamorphic petrology[M].New Jersey:Prentice Hall
    Woldehaimanot B.2000.Tectonic setting and geochemical characteristics of Neoproterozoic volcanics and granitoids from the Adobha Belt,northern Eritrea[J].Journal of African Earth Sciences,30(4):817-831.
    Xiang P and Wang J X.2013.Ore geology character and type of Koka gold deposit,Eritrea[J].Acta Mineralogica Sinica,(s2):1067-1068(in Chinese with English abstract).
    Xu J H,Wang J X,Xiang P,Li Y H,Xiao X,Zhang H and Cheng X H.2015.Extremely CO2-rich fluid inclusions in an orogenic gold deposit:Hamadi gold deposit of Sudan[J].Acta Petrologica Sinica,31(4):1040-1048(in Chinese with English abstract).
    Zeng G P,Yao S Z,He M C,Xiong S F and Chen B.2016.Ore forming fluid and metallogenic mechanism of Tianwangtaishan gold deposit,Heilongjiang Province[J].Mineral Deposits,35(1):85-102(in Chinese with English abstract).
    Zhang D H and Liu W.1998.Fluid inclusion compositions of Au deposits and their genesis significance:The discussion on the origin of ore-forming fluid of Shibangou gold deposit,Xixia,Henan Province[J].Geological Science and Technology Information,17(Supp.):67-71(in Chinese with English abstract).
    Zhao X Z,Duan H C and Wang F X.2012.General characteristics of geology and mineral resources in Eritrea and exploration progress[J].Mineral Exploration,5(3):707-714(in Chinese with English abstract).
    Zoheir B A,El-Shazly A K,Helba H,Khalil K I and Bodnar R J.2008.Origin and evolution of the Um Egat and Dungash orogenic gold deposits,Egyptian eastern desert:Evidence from fluid inclusions in quartz[J].Econ.Geol.,103(2):405-424.
    曹亮,段其发,彭三国,周云.2015.雪峰山铲子坪金矿床流体包裹体特征及地质意义[J].地质与勘探,51(2):212-224.
    陈衍景,倪培,范洪瑞,Pirajno F,赖勇,苏文超,张辉.2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,23(9):2085-2108.
    李辉,胡建勇.2012.苏丹哈马迪金矿地球化学特征及成因探讨[J].地质找矿论丛,27(2):222-226.
    唐攀,陈敏川,唐菊兴,郑文宝,冷秋锋,林彬.2017.西藏拉抗俄斑岩铜钼矿床流体包裹体研究[J].矿床地质,36(1):68-82.
    魏浩,徐九华,王建雄,张国瑞,张辉,徐清扬.2015.非洲东北部阿拉伯-努比亚地盾(ANS)构造演化与金成矿作用[J].地质与勘探,51(2):383-394.
    向鹏,王建雄.2013.厄立特里亚Koka金矿地质特征及矿床类型[J].矿物学报,(s2):1067-1068.
    徐九华,王建雄,向鹏,李闫华,肖星,张辉,成曦晖.2015.极富CO2流体的造山型金矿:苏丹哈马迪金矿[J].岩石学报,31(4):1040-1048.
    曾国平,姚书振,何谋春,熊索菲,陈斌.2016.黑龙江省呼玛县天望台山金矿床成矿流体特征与成矿机制研究[J].矿床地质,35(1):85-102.
    张德会,刘伟.1998.流体包裹体成分与金矿床成矿流体来源--以河南西峡石板沟金矿床为例[J].地质科技情报,(S1):68-72.
    赵孝忠,段焕春,王凤仙.2012.厄立特里亚地质矿产概况及勘查新进展.矿产勘查,5(3):707-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700