用户名: 密码: 验证码:
催化裂化汽油清洁化技术研究开发进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in fluid catalytic cracking naphtha cleaning technology
  • 作者:王廷海 ; 李文涛 ; 常晓昕 ; 向永 ; 鲍晓军
  • 英文作者:WANG Tinghai;LI Wentao;CHANG Xiaoxin;XIANG Yongsheng;BAO Xiaojun;College of Chemical Engineering, Fuzhou University;Lanzhou Petrochemical Research Centre,PetroChina;
  • 关键词:清洁汽油 ; 工艺 ; 催化剂 ; 脱硫 ; 烯烃含量降低
  • 英文关键词:clean gasoline;;process;;catalyst;;hydrodesulfurization;;olefin reduction
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:福州大学石油化工学院;中国石油兰州化工研究中心;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金联合基金重点项目(U1462203)
  • 语种:中文;
  • 页:HGJZ201901018
  • 页数:12
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:203-214
摘要
为满足日益严格的清洁汽油标准不断降低硫和烯烃含量的需求,国内外在汽油清洁化领域开展了大量的研究工作。本文综述了近年来相关研究开发工作的进展,概述了催化裂化汽油中硫化物和烯烃的分布及特点、各种烃类的辛烷值、各种烯烃的加氢反应活性及其对加氢脱硫反应的抑制作用,重点分析比较了国内外典型的催化裂化汽油清洁化工艺技术(包括选择性加氢脱硫工艺、选择性加氢脱硫-烯烃定向转化工艺、临氢吸附脱硫工艺以及选择性加氢脱硫-溶剂抽提组合工艺)的优缺点,简述了加氢脱硫催化剂的活性相模型及选择性加氢脱硫催化剂的研究开发现状,指出实现烯烃的定向转化将是未来催化裂化汽油清洁化技术的重点研发方向,以期为后续的研究开发提供参考。
        To meet the technical requirements of reducing sulfur and olefin contents in the increasingly stringent clean gasoline standards, extensive researches have been carried out in the field of gasoline cleaning technology over the world. In this review, the recent progresses were summarized from the following three aspects:(1) the distributions of sulfides and olefins in fluid catalytic cracking naphtha, theoctane numbers of different hydrocarbons, and the hydrogenation reactivity of various olefins and theirsuppressing effects on hydrodesulfurization;(2) the advantages and disadvantages of the various fluidcatalytic naphtha hydroupgrading processes, including selective hydrodesulfurization processes, thecombined processes of selective hydrodesulfurization and directed olefin conversion, adsorptiondesulfurization, and the combined processes of selective hydrodesulfurization and solvent extraction; and(3) the typical models for active metal sulfides and the recent advances in catalyst development. The aim of this review is to provide a brief but comprehensive reference for researchers in the field of clean gasoline production technology.
引文
[1]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.车用汽油:GB 17930—2016[S].北京:中国标准出版社, 2016.AQSIQ, SAC. Gasoline for motor vehicles:GB 17930—2016[S].Beijing:Standards Press of China, 2016.
    [2] KAUFMANN T G, KALDOR A, STUNTZ G F, et al. Catalysisscience and technology for cleaner transportation fuels[J].Catalysis Today, 2000, 62(1):77-90.
    [3] SONG C.An overview of new approaches to deep desulfurizationfor ultra-clean gasoline, diesel fuel and jet fuel[J]. CatalysisToday, 2003, 86(1):211-263.
    [4] BRUNET S, MEY D, PéROT G, et al. On thehydrodesulfurization of FCC gasoline:a review[J]. AppliedCatalysis A:General, 2008, 278(2):143-172.
    [5] HATANAKA S, YAMADA M. Hydrodesulfurization of catalyticcracked gasoline. 2. The difference between HDS active site andolefin hydrogenation active site[J]. Industrial&EngineeringChemistry Research, 1997, 36(12):263-266.
    [6] CHENG W C, KIM G, PETERS A W, et al.Environmental fluidcatalytic cracking technology[J].Catalysis Reviews, 1998, 40(1/2):39-79.
    [7] YIN C, ZHU G, XIA D. Determination of organic sulfurcompounds in naphtha. Part I. Identification and quantitativeanalysis of sulfides in FCC and RFCC naphthas[J]. BulletinGeodesique, 2002, 21(1):19-22.
    [8]黄长荣.FCC汽油、柴油中含硫化合物形态和分布的分析方法研究[D].济南:山东大学, 2001.HUANG Changrong.The analysis method of sulfur componds inFCC gasoline and desiel[D]. Jinan:Shandong University, 2001.
    [9] WANG L, SHI G, XU J, et al.Simple model for predicting thecutting temperature between light and heavy fractions in fluidcatalytic cracking naphtha selective hydrodesulfurizationprocesses[J]. Energy&Fuels, 2014, 28(12):7411-7417.
    [10] HATANAKA S, YAMADA M. Hydrodesulfurization of catalyticcracked gasoline. 3. Selective catalytic cracked gasolinehydrodesulfurization on the Co-Mo/γ-Al2O3catalyst modified bycoking pretreatment[J]. Industrial&Engineering ChemistryResearch, 1998, 37(5):1748-1754.
    [11] TOBA M, MIKI Y, MATSUI T. Reactivity of olefins in thehydrodesulfurization of FCC gasoline over CoMo sulfide catalyst[J]. Applied Catalysis B:Environmental, 2007, 70(1):542-547.
    [12] NADEINA K A, PEREIMA V Y, KLIMOV O V, et al. Catalyst forselective hydrotreating of catalytic cracking gasoline withoutpreliminary fractionation[J]. Catalysis in Industry, 2017, 9(3):230-238.
    [13] MORALES-VALENCIA E M, BALDOVINO-MEDRANO V G,GIRALDO S A. Reactivity of olefins and inhibition effect on thehydrodesulfurization of a model FCC naphtha[J]. Fuel, 2015, 153:294-302.
    [14]王廷海,钱颖,郑云弟,等.一种含无定型硅铝的拟薄水铝石及其制备方法:CN201010106266.6[P]. 2010.WANG Tinghai, QIAN Ying, ZHENG Yundi, et al. Apseudoboehmite containing amorphous silica-alumina and itspreparation method:CN2010106266.6[P]. 2010.
    [15] NADEINA K A, PEREIMA V Y, KLIMOV O V, et al. Catalyst for selective hydrotreating of catalytic cracking gasoline withoutpreliminary fractionation[J]. Catalysis in Industry, 2017, 9(3):230-238.
    [16]王宁,温浩,李晓霞,等.汽油燃料的化学组成和结构与抗爆性能关系的研究[J].石油炼制与化工, 1996, 27(2):41-46.WANG Ning, WEN Hao, LI Xiaoxia, et al. Relationship betweenhydrocarbon composition structure and anti-knock property ofgasoline[J]. Petroleum Processing and Petrochemicals, 1997, 27(2):41-46.
    [17] GOLDEN S W, HANSON D W, FULTON S A. Use betterfractionation to manage gasoline sulfur concentration[J].Hydrocarbon Processing, 2002, 81(2):67-72.
    [18]钱伯章.卢克石油公司设置第200套Prime-G+汽油脱硫装置[J].石油炼制与化工, 2012, 81(8):1.QIAN Bozhang. The 200 sets of Prime-G+for gasolinehydrodesulfurization in Luke petroleum company[J]. PetroleumProcessing and Petrochemicals, 2012, 81(8):1.
    [19]赵德强,董海明.催化汽油加氢脱硫装置国V改造开工总结[J].石油与天然气化工, 2017, 46(6):24-30.ZHAO Deqiang, DONG Haiming. Start-up summarization of FCCgasoline hydrodesulfurization unit transformation according tonational standard of grade V gasoline[J]. Chemical Engineering ofOil&Gas, 2017, 46(6):24-30.
    [20]张星,龙钰,孙方宪,等.催化裂化汽油质量升级方案选择[J].当代化工, 2010, 39(2):158-161.ZHANG Xing, LONG Yu, SUN Fangxian, et al. Process schemeselection of qualitiy upgrading of catalytic cracking gasoline[J].Contemperary Chemical Industry, 2010, 39(2):158-161.
    [21]张星,孙方宪,尹恩杰,等. CDHydro/CDHDS FCC汽油选择性加氢脱硫工艺设计[J].炼油技术与工程, 2010, 40(1):6-9.ZHANG Xing, SUN Fangxian, YIN Enjie, et al. Process design ofCDHydro/CDHDS for selective hydrodesulfurization of FCCnaphtha[J]. Petroleum Refinery Engineering, 2010, 40(1):6-9.
    [22] SHI H S, OWENS P, PALIT S, et al. Mobil’s OCTGAIN process:FCC gasoline desulfurization reaches a new performance level[C]//NPRA:NPRA Annual Meeting, 1999:AM-99-30.
    [23]宋爱萍.提高汽油质量的工艺技术进展[J].石油规划设计,2001, 12(6):10-12.SONG Aiping. The research progress of improving gasoline quality[J]. Petroleum Planning&Engineering, 2001, 12(6):10-12.
    [24]靳凤英.催化裂化(FCC)汽油选择性加氢脱硫催化剂研究[D].大连:大连理工大学, 2016.JIN Fengying. The studing of catalyst used in catalytic cracking(FCC)gasoline selective hydrodesulfurization[D]. Dalian:DalianUniversity of Technoloty, 2016.
    [25]石冈,范煜,鲍晓军,等.催化裂化汽油加氢改质GARDES技术的开发及工业试验[J].石油炼制与化工, 2013, 44(9):66-72.SHI Gang, FAN Yu, BAO Xiaojun, et al. Development andapplication of GARDES technolgy for fluid catalytic crackinggasoline upgrading[J]. Petroleum Processing and Petrochemicals,2013, 44(9):66-72.
    [26]向永生,黄金刚,石冈,等. GARDES工艺在FCC汽油加氢装置的工业应用[J].工业催化, 2015, 23(2):131-135.XIANG Yongsheng, HUANG Jingang, SHI Gang, et al.Commercial application of GARDES process in FCC gasolinehydrogenation unit[J]. Industrial Catalysis, 2015, 23(2):131-135.
    [27]杨黎峰,刘昕. GARDES技术催化汽油加氢装置性能评价[J].炼油与化工, 2017, 28(6):10-12.YANG Lifeng, LIU Xin. Performance evaluation of catalyticgasoline hydrogenation unit of GARDES technology[J]. Refiningand Chemical Industry, 2017, 28(6):10-12.
    [28]曲志海,秦玉华,常晓昕,等. GARDES工艺在30万t/a汽油加氢装置上的应用[J].石化技术与应用, 2017, 35(5):367-370.QU Zhihai, QIN Yuhua, CHANG Xiaoxin, et al. Commercialapplication of GARDES process in a 0.3 Mt/a gasolinehydrogenation unit[J]. Petrochemical Technology and Application,2017, 35(5):367-370.
    [29] HUANG L, WANG G, QIN Z, et al. A sulfur K-edge XANESstudy on the transfer of sulfur species in the reactive adsorptiondesulfurization of diesel oil over Ni/ZnO[J]. CatalysisCommunications, 2010, 11(7):592-596.
    [30] TAWARA K, NISHIMURA T, IWANAMI H. Ultra-deephydrodesulfurization of kerosene for fuel cell system.(part 2):Regeneration of sulfur-poisoned nickel catalyst in hydrogen andfinding of auto-regenerative nickel catalyst[J]. Sekiyu Gakkaishi,2000, 43(2):114-120.
    [31]刘传勤.齐鲁900kt/a汽油吸附脱硫装置开工及运行总结[J].齐鲁石油化工, 2010, 38(4):276-280.LIU Chuanqin. Summary on initial start and running of QiLu900kt/a S-Zorb device[J]. Qilu Petrochemical, 2010, 38(4):276-280.
    [32]燕山石化催化吸附脱硫装置通过验收[J].气体净化, 2010, 10(1):22.The check and accept of catalytic adsorbed unit about Yanshanrefinery[J]. Gas Purification, 2010, 10(1):22.
    [33]王明哲,阮宇军.催化裂化汽油吸附脱硫反应工艺条件的探讨[J].炼油技术与工程, 2010, 40(9):5-9.WANG Mingzhe, YUAN Yujun. Study on process conditions ofadsorption desulfurization reaction of FCC gasoline[J]. PetroleumRefinery Engineering, 2010, 40(9):5-9.
    [34]孙启明,张遥,赵明洋. S-Zorb国产吸附剂在高桥催化裂化汽油脱硫装置上的应用[J].炼油技术与工程, 2013, 43(1):15-18.ZHANG Qiming, ZHANG Yao, ZHAO Mingyang. Application ofdomestic S-Zorb absorbent in commercial FCC gasolinedesulfurization unit[J]. Petroleum Refinery Engineering, 2013, 43(1):15-18.
    [35] TAWARA K, NISHIMURA T, IWANAMI H, et al. Newhydrodesulfurization catalyst for petroleum-fed fuel cell vehiclesand cogenerations[J]. Industrial&Engineering ChemistryResearch, 2001, 40(10):2367-2370.
    [36]郝天臻,李艳珍,胡同雨,等.催化汽油抽提加氢组合脱硫工艺[J].石化技术, 2016(1):21-23.HAO Tianzhen, LI Yanzhen, HU Tongyu, et al. Process of FCCgasoline extraction and hydrogenation group desulfurization[J].Petrochemical Industry Technology, 2016(1):21-23.
    [37] STANISLAUS A, MARAFI A, RANA M S. Recent advances in thescience and technology of ultra low sulfur diesel(ULSD)production[J]. Catalysis Today, 2010, 153(1):1-68.
    [38] PRINS R. Catalytic hydrodenitrogenation[J]. Advances inCatalysis, 2001, 46(2):399-464.
    [39] VOORHOEVE R J H, STUIVER J C M. The mechanism of thehydrogenation of cyclohexene and benzene on nickel-tungstensulfide catalysts[J]. Journal of Catalysis, 1971, 23(2):243-252.
    [40] TOPS?E H, CLAUSEN B S, CANDIA R, et al. In situ m?ssbauer emission spectroscopy studies of unsupported and supportedsulfided Co-Mo hydrodesulfurization catalysts:evidence for andnature of a Co-Mo-S phase[J]. Journal of Catalysis, 1981, 68(2):433-452.
    [41] TOPS?E H, CLAUSEN B S. Importance of Co-Mo-S typestructures in hydrodesulfurization[J]. Catalysis Reviews, 1984, 26(3-4):395-420.
    [42] BOUWENS S M A M, VANZON F B M, VANDIJK M P, et al. Onthe structural differences between alumina-supported CoMoStypeI and alumina-, silica-, and carbon-supported CoMoS type IIphases studied by XAFS, MES, and XPS[J]. Journal of Catalysis,1994, 146(2):375-393.
    [43] LOUWERS S P A, PRINS R. Ni EXAFS studies of the Ni-Mo-Sstructure in carbon-supported and alumina-supported Ni-Mocatalysts[J]. Journal of Catalysis, 1992, 133(1):94-111.
    [44] LOUWERS S P A, PRINS R. An EXAFS Study on the Ni and Wenvironment in carbon-supported, sulfided W and Ni-W catalysts[J]. Journal of Catalysis, 1993, 139(2):525-539.
    [45] USMAN, KUBOTA T, HIROMITSU I, et al. Effect of boronaddition on the surface structure of Co-Mo/Al2O3catalysts[J].Journal of Catalysis, 2007, 247(1):78-85.
    [46] USMAN, YAMAMOTO T, KUBOTA T, et al. Effect of phosphorusaddition on the active sites of a Co-Mo/Al2O3catalyst for thehydrodesulfurization of thiophene[J]. Applied Catalysis A:General, 2007, 328(2):219-225.
    [47] RINALDI N, USMAN, DALAMA K, et al. Preparation of Co–Mo/B2O3/Al2O3catalysts for hydrodesulfurization:effect of citric acidaddition[J]. Applied Catalysis A:General, 2009, 360(2):130-136.
    [48] NICOSIA D, PRINS R. The effect of phosphate and glycol on thesulfidation mechanism of CoMo/Al2O3hydrotreating catalysts:anin situ QEXAFS study[J]. Journal of Catalysis, 2005, 231(2):259-268.
    [49] MEDICI L, PRINS R. The influence of chelating ligands on thesulfidation of Ni and Mo in NiMo/SiO2hydrotreating catalysts[J].Journal of Catalysis, 1996, 163(1):38-49.
    [50] BREYSSE M, GEANTET C, AFANASIEV P, et al. Recent studieson the preparation, activation and design of active phases andsupports of hydrotreating catalysts[J]. Catalysis Today, 2008, 130(1):3-13.
    [51] DAAGE M, CHIANELLI R R. Structure-function relations inmolybdenum sulfide catalysts:the"Rim-Edge"model[J]. Journalof Catalysis, 1994, 149(2):414-427.
    [52] FAN Y, SHI G, LIU H, et al. Morphology tuning of supportedMoS2slabs for selectivity enhancement of fluid catalytic crackinggasoline hydrodesulfurization catalysts[J]. Applied Catalysis B:Environmental, 2009, 91(1-2):73-82.
    [53] LI P, CHEN Y, ZHANG C, et al. Highly selectivehydrodesulfurization of gasoline on unsupported Co-Mo sulfidecatalysts:effect of MoS2morphology[J]. Applied Catalysis A:General, 2017, 533:99-108.
    [54] NGUYEN T S, LORIDANT S, CHANTAL L, et al. Effect of glycolon the formation of active species and sulfidation mechanism ofCoMoP/Al2O3hydrotreating catalysts[J]. Applied Catalysis B:Environmental, 2011, 107(1-2):59-67.
    [55] ASUA J M, DELMON B. Separation of the kinetic terms incatalytic reactions with varying number of active sites(case of theremote control model)[J]. Applied Catalysis, 1984, 12(2):249-262.
    [56] PORTELA L, GRANGE P, DELMON B. XPS and NO adsorptionstudies on alumina-supported Co-Mo catalysts sulfided bydifferent procedures[J]. Journal of Catalysis, 1995, 156(2):243-254.
    [57] GRANGE P, VANHAEREN X. Hydrotreating catalysts, an oldstory with new challenges[J]. Catalysis Today, 1997, 36(4):375-391.
    [58] KARROUA M, CENTENO A, MATRALIS H K, et al. Synergy inhydrodesulphurization and hydrogenation on mechanical mixturesof cobalt sulphide on carbon and MoS2on alumina[J]. AppliedCatalysis, 1989, 51(1):L21-L26.
    [59] KARROUA M, GRANGE P, DELMON B. Existence of synergybetween“CoMoS”and Co9S8:new proof of remote control inhydrodesulfurization[J]. Applied Catalysis, 1989, 50(1):L5-L10.
    [60] ESCALONA N, GARCIA R, LAGOS G, et al. Effect of thehydrogen spillover on the selectivity of dibenzothiophenehydrodesulfurization over CoSx/γ-Al2O3, NiSx/γ-Al2O3and MoS2/γ-Al2O3catalysts[J]. Catalysis Communications, 2006, 7(12):1053-1056.
    [61] OJEDA J, ESCALONA N, BAEZA P, et al. Synergy between Mo/SiO2and Co/SiO2beds in HDS:a remote control effect[J].Chemical Communications, 2003, 9(13):1608-1609.
    [62] FLEGO C, O'NEIL PARKER JR W. Characterization ofγ-aluminaand borated alumina catalysts[J]. Applied Catalysis A:General,1999, 185(1):137-152.
    [63] TROMBETTA M, BUSCA G, ROSSINI S, et al. FT-IR studies onlight olefin skeletal isomerization catalysis:Ⅲ. Surface acidityand activity of amorphous and crystalline catalysts belonging tothe SiO2-Al2O3system[J]. Journal of Catalysis, 1998, 179(2):581-596.
    [64] WIYANTOKO B, KURNIAWATI P, PURBANINGTIAS T E, etal. Synthesis and characterization of hydrotalcite at different Mg/Al molar ratios[J]. Procedia Chemistry, 2015, 17:21-26.
    [65] ARIAS S, LICEA Y E, PALACIO L A, et al. Unsupported NiMoAlhydrotreating catalysts prepared from NiAl-terephthalatehydrotalcites exchanged with heptamolybdate[J]. Catalysis Today,2013, 213:198-205.
    [66] MOKHTAR M, SALEH T S, BASAHEL S N. Mg-Al hydrotalcitesas efficient catalysts for aza-Michael addition reaction:a greenprotocol[J]. Journal of Molecular Catalysis A:Chemical, 2012,353-354:122-131.
    [67] ESCOBAR-ALARCON L, KLIMOVA T, ESCOBAR-AGUILARJ, et al. Preparation and characterization of Al2O3-MgO catalyticsupports modified with lithium[J]. Fuel, 2013, 110:278-285.
    [68] GUEVARA-LARA A, CRUZ-PERèZ A E, Contreras-Valdez Z,et al. Effect of Ni promoter in the oxide precursors of MoS2/MgO-Al2O3catalysts tested in dibenzothiophene hydrodesulphurization[J]. Catalysis Today, 2010, 149(3-4):288-294.
    [69] BADAWI M, VIVIER L, PéROT G, et al. Promoting effect ofcobalt and nickel on the activity of hydrotreating catalysts inhydrogenation and isomerization of olefins[J]. Journal of MolecularCatalysis A:Chemical, 2008, 293(1):53-58.
    [70] HILLEROVáE, VíT Z, ZDRA?IL M. Magnesia supported Ni-Mosulfide hydrodesulfurization and hydrodenitrogenation catalystsprepared by non-aqueous impregnation[J]. Applied Catalysis A:General, 1994, 118(7):111-125.
    [71] YIN G Z, XIA D. Determination of organic sulfur compounds in naphtha. PartⅡ. Identification and quantitative analysis ofthiophenes in FCC and RFCC naphthas[J]. Am. Chem. Soc. Prepr.Div. Pet. Chem., 2002, 47(1):63.
    [72] WU Q, LI Y, HOU Z, et al. Synthesis and characterization of Beta-FDU-12 and the hydrodesulfurization performance of FCCgasoline and diesel[J]. Fuel Processing Technology, 2018, 172:55-64.
    [73] MEY D, BRUNET S, CANAFF C, et al. HDS of a model FCCgasoline over a sulfided CoMo/Al2O3catalyst:effect of the additionof potassium[J]. Journal of Catalysis, 2004, 227(2):436-447.
    [74] OKAMOTO Y, OCHIAI K, KAWANO M, et al. Effects of supporton the activity of Co-Mo sulfide model catalysts[J]. AppliedCatalysis A:General, 2002, 226(1):115-127.
    [75] NIKULSHIN P, ISHUTENKO D, ANASHKIN Y, et al. Selectivehydrotreating of FCC gasoline over KCoMoP/Al2O3catalystsprepared with H3PMo12O40:effect of metal loading[J]. Fuel, 2016,182:632-639.
    [76] VILLARROEL M, BAEZA P, GRACIA F, et al. Phosphorus effecton Co//Mo and Ni//Mo synergism in hydrodesulphurizationcatalysts[J]. Applied Catalysis A:General, 2009, 364(1):75-79.
    [77] NIKULSHIN P A, MOZHAEV A V, MASLAKOV K I, et al.Genesis of HDT catalysts prepared with the use of Co2Mo10HPAand cobalt citrate:study of their gas and liquid phase sulfidation[J]. Applied Catalysis B:Environmental, 2014, 158-159(1):161-174.
    [78] CATTANEO R, ROTA F, PRINS R. An XAFS study of thedifferent influence of chelating ligands on the HDN and HDS ofγ-Al2O3-supported NiMo catalysts[J]. Journal of Catalysis, 2001, 199(2):318-327.
    [79] MEDICI L, PRINS R. The influence of chelating ligands on thesulfidation of Ni and Mo in NiMo/SiO2hydrotreating catalysts[J].Journal of Catalysis, 1996, 163(1):38-49.
    [80] DILLEN A J V, TER?RDE R J A M, LENSVELD D J, et al.Synthesis of supported catalysts by impregnation and drying usingaqueous chelated metal complexes[J]. Journal of Catalysis, 2003,216(1):257-264.
    [81] HAANDEL L V, BREMMER G M, HENSEN E J M, et al. Theeffect of organic additives and phosphoric acid on sulfidation andactivity of(Co)Mo/Al2O3hydrodesulfurization catalysts[J]. Journalof Catalysis, 2017, 351:95-106.
    [82] COULIER L, BEER V H J D, VEEN J A R V, et al. Correlationbetween hydrodesulfurization activity and order of Ni and Mosulfidation in planar silica-supported NiMo catalysts:theinfluence of chelating agents[J]. Journal of Catalysis, 2001, 197(1):26-33.
    [83] FUJIKAWA T. Highly active HDS catalyst for producing ultra-low sulfur diesel fuels[J]. Topics in Catalysis, 2009, 52(6-7):872-879.
    [84] CASTILLO-VILLALóN P, RAMIREZ J, VARGAS-LUCIANO JA. Analysis of the role of citric acid in the preparation of highlyactive HDS catalysts[J]. Journal of Catalysis, 2014, 320(1):127-136.
    [85] NIKULSHIN P A, MOZHAEV A V, MASLAKOV K I, et al.Genesis of HDT catalysts prepared with the use of Co2Mo10HPAand cobalt citrate:study of their gas and liquid phase sulfidation[J]. Applied Catalysis B:Environmental, 2014, 158-159:161-174.
    [86] GUICHARD B, ROY-AUBERGER M, DEVERS E, et al.Influence of the promoter's nature(nickel or cobalt)on the activephases Ni(Co)MoS modifications during deactivation in HDS ofdiesel fuel[J]. Catalysis Today, 2010, 149(1):2-10.
    [87] CHEN J, MAUGéF, FALLAH J E, et al. IR spectroscopyevidence of MoS2morphology change by citric acid addition onMoS2/Al2O3catalysts-a step forward to differentiate the reactivityof M-edge and S-edge[J]. Journal of Catalysis, 2014, 320(1):170-179.
    [88] SHAN S, YUAN P, HAN W, et al. Supported NiW catalysts withtunable size and morphology of active phases for highly selectivehydrodesulfurization of fluid catalytic cracking naphtha[J]. Journalof Catalysis, 2015, 330:288-301.
    [89] SHAN S, LIU H, YUE Y, et al. Trimetallic WMoNi diesel ultra-deep hydrodesulfurization catalysts with enhanced synergismprepared from inorganic-organic hybrid nanocrystals[J]. Journal ofCatalysis, 2016, 344:325-333.
    [90] HAN W, YUAN P, FAN Y, et al. Preparation of supportedhydrodesulfurization catalysts with enhanced performance usingMo-based inorganic-organic hybrid nanocrystals as a superiorprecursor[J]. Journal of Materials Chemistry, 2012, 22(48):25340-25353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700