基于石墨烯编码超构材料的太赫兹波束多功能动态调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial
  • 作者:闫昕 ; 梁兰菊 ; 张璋 ; 杨茂生 ; 韦德泉 ; 王猛 ; 李院平 ; 吕依颖 ; 张兴坊 ; 丁欣 ; 姚建铨
  • 英文作者:Yan Xin;Liang Lan-Ju;Zhang Zhang;Yang Mao-Sheng;Wei De-Quan;Wang Meng;Li Yuan-Ping;Lü Yi-Ying;Zhang Xing-Fang;Ding Xin;Yao Jian-Quan;School of Opt-Electronic Engineering, Zaozhuang University;College of Precision Instrument and Opto-electronics Engineering, Tianjin University;Laboratory of Optoelectronic Information Processing and Display of Shandong;
  • 关键词:石墨烯 ; 太赫兹 ; 编码超构材料 ; 动态调控
  • 英文关键词:graphene;;terahertz;;coding metamaterial;;dynamic control
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:枣庄学院光电工程学院;天津大学精密仪器与光电子工程学院;山东省光电信息处理与显示实验室;
  • 出版日期:2018-05-09 14:40
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:61701434,61735010);; 山东省自然基金(批准号:ZR2017MF005);; 山东省高等学校科技计划(批准号:J17KA087);; 中国博士后科学基金(批准号:2015M571263);; 枣庄市自主创新及成果转化专项(批准号:2016GH19,2016GH31);; 枣庄市光电信息功能材料与微纳器件重点实验室;; 枣庄市太赫兹工程技术研究中心资助的课题~~
  • 语种:中文;
  • 页:WLXB201811024
  • 页数:11
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:224-234
摘要
提出了一种基于石墨烯带的太赫兹波段的1 bit编码超构材料,可以实现太赫兹波束的数目、频率、幅度等参数多功能动态调控.该结构由金属薄膜、聚酰亚胺、硅、二氧化硅、石墨烯带组成.通过对石墨烯带施加两种不同的电压,可以实现一定频率范围内相位差接近180?的"0"和"1"数字编码单元,进而构成1 bit动态可控的编码超构材料.全波仿真结果表明,不同序列的编码超构材料能够实现波束数目从单波束、双波束、多波束到宽波束的调控.相同序列的编码超构材料,通过施加石墨烯带的不同电压能够实现宽频段波束频率的偏移.对于000000或者111111周期序列的编码超构材料,通过施加石墨烯带的不同电压还能够实现波束幅度的调控.因此这种基于石墨烯带的编码超构材料为灵活调控太赫兹波提供了一种新的途径,将在雷达隐身、成像、宽带通信等方面具有重要的意义.
        Terahertz(THz) waves have aroused tremendous research interest due to its some unique features and widespread applications in broadband communication, military radar, non-destructive detection, biomedical, security check, etc.With the development of THz applications, dynamic control beam of THz wave with wide bandwidth and multifunction has become a key issue in the field THz technology. The metamaterial with a kind of artificial material provides an approach to controlling the terahertz beam. However, the characteristics of metamaterials based on the equivalent medium parameters are limited by the structural configuration, which usually causes disadvantageous problems including the real-time dynamic control, narrow bandwidth, modulating efficiency, complicated design, etc. The coding metamaterial based digital elements provide an approach to wideband and flexible control terahertz wave by different sequences. However, the THz waves are still hard to tune in dynamic ways due to the limitation of material properties and processing capability. Graphene with a new two-dimensional material has excellent photoelectric properties such as tunable band gap, flexibly dynamic performance, and low material loss. Therefore, the graphene with coding metamaterial can offer a new way of dynamically controlling beam. In this paper, we design a 1 bit coding metamaterial based on graphene ribbon, which can be expected to realize multi-modulation to the number of beams, frequency and amplitude of THz wavers. The mechanism of controlling electromagnetic wave by coding metamaterial can be explained by the reflective array antenna. And the characteristics of the proposed metamaterial based on the graphene ribbon and the far-field scattering of coding metamaterial are simulated using the CST Microwave Studio. A composite structure which consists of gold metal, polyimide, silicon, silicon dioxide, graphene ribbon is designed and characterized in the THz range. The simulation results show that by gating different graphene ribbons, the coding state(digital element) on each column can be independently controlled as well, thus the ‘0' and ‘1' digital elements with a phase difference of 180?in a certain frequency range can be realized, and then the coding sequence on metamaterials is dynamically modulated. Full-wave simulation results also show that different-sequence coding metamaterials can achieve the control of the number of scattering THz beams, from one, double, multi scattering in a wide frequency range(from 1.7 to 2.2 THz). For coding sequence ‘010101...' realized by gating different voltages on coding elements ‘0' and ‘1', the frequency at which double scattering beams are produced, presents shift. For the coding metamaterial of periodic sequence of 000000 or 111111 with different voltage for different graphene ribbon, which can be expected to realize amplitude modulation from-12 d B to-23 d B of THz beam steering at f1= 1 THz. Therefore, this graphene coding metamaterial can control the THz beam flexibly and may offer widespread applications in stealth, imaging, and broadband communication of THz frequencies.
引文
[1]Tonouchi M 2007 Nat.Photon.1 97
    [2]Pawar A Y,Sonawane D D,Erande K B,Derle D V 2013Drug Invent.Today 5 157
    [3]Nagatsuma T,Ducournau G,Renaud C C 2016 Nat.Photon.10 371
    [4]Alves F,Grbovic D,Kearney B,Karunasiri G 2012 Opt.Lett.37 1886
    [5]Benz A,Rall M,Schwarz S,Dietze D,Detz H,Andrews A M,Schrenk W 2014 Sci.Rep.4 4269
    [6]Chen S,Hu W D 2017 Radio Commun.Technol.43 01(in Chinese)[陈实,胡伟东2017无线电通信技术43 01]
    [7]Shen H P,Koschny T T,Soukoulis C M 2014 Phys.Rev.B 90 115437
    [8]Dabidian N,Gupta S D,Kholmanov I,Lai K,Lu F,Lee J W,Jin M Z,Trendafilov S,Khanikaev A,Fallahazad B,Tutuc E,Belkin M A,Gennady S 2016 Nano Lett.16 3607
    [9]Zheludev N I 2010 Science 328 582
    [10]Sun S,He Q,Xiao S,Xu Q,Li X,Zhou L 2012 Nat.Mater.11 426
    [11]Han J F,Cao X Y,Gao J,Li S J,Zhang C 2016 Acta Phys.Sin.65 044201(in Chinese)[韩江枫,曹祥玉,高军,李思佳,张晨2016物理学报65 044201]
    [12]Wang G D,Liu M H,Hu X W,Kong L H,Cheng L L,Chen Z Q 2014 Chin.Phys.B 23 017802
    [13]Jia S L,Wan X,Su P,Zhao Y J,Cui T J 2016 AIP Advan.6 045024
    [14]Zhang Y,Feng Y J,Jiang T,Cao J,Zhao J M,Zhu B2017 Acta Phys.Sin.66 204101(in Chinese)[张银,冯一军,姜田,曹杰,赵俊明,朱博2017物理学报66 204101]
    [15]Lee S H,Choi M,Kim T T,Lee S,Liu M,Yin X B,Choi H K,Lee S S,Choi C G,Choi S Y,Zhang X,Min B 2012 Nat.Mater.11 936
    [16]Shen N H,Koschny T,Soukoulis C M,Tassin P 2014Phys.Rev.B 90 115437
    [17]Dabidian N,Dutta-Gupta S,Kholmanov I,Lai K,Lu F,Jongwon L,Jin M Z,Trendafilov S,Khanikaev A,Fallahazad B,Tutuc E,Shvets G 2016 Nano Lett.163607
    [18]Sensale-Rodriguez B,Yan R,Kelly M M,Fang T,Tahy K,Hwang W S,Debdeep J,Liu L,Xing H G 2012 Nat.Commun.3 780
    [19]Gao H,Yan F P,Tian S Y,Bai Y 2017 Chinese J.Lasers44 0703024(in Chinese)[高红,延凤平,谭思宇,白燕2017中国激光44 0703024]
    [20]Sherrott M C,Hon P W C,Fountaine K T,Garcia J C,Ponti S M,Brar V W,Sweatlock L A,Atwater H A2017 Nano Lett.17 3027
    [21]Carrasco E,Tamagnone M,Perruisseau-Carrier J 2013Appl.Phys.Lett.102 104103
    [22]Zhang Y,Feng Y J,Zhu B,Zhao J M,Jiang T 2016 Opt.Express 23 27230
    [23]Orazbayev B,Beruete M,Khromova I 2016 Opt.Express24 8848
    [24]Su Z X,Chen X,Yin J B,Zhao X P 2016 Opt.Lett.163799
    [25]Della G C,Engheta N 2014 Nat.Mater.13 1115
    [26]Cui T J,Qi M Q,Wan X,Zhao J,Cheng Q 2014 Light:Sci.Appl.3 e218
    [27]Liu S,Zhang L,Yang Q L,Xu Q,Yang Y,Noor A,Zhang Q,Shahid I,Wan X,Tian Z,Tang W X,Cheng Q,Han J G,Zhang W L 2016 Adv.Opt.Mater.4 1965
    [28]Liu S,Cui T J,Zhang L,Xu Q,Wang Q,Wan X,Gu J Q,Tang W X,Qi M Q,Han J G,Zhang W L,Zhou X Y,Cheng Q 2016 Adv.Sci.3 1600156
    [29]Cui T J 2017 J.Opt.19 084004
    [30]Zhang L 2017 J.Mater.Chem.C 5 3644
    [31]Liu S,Cui T J 2017 Adv.Opt.Mater.5 1700624
    [32]Liang L J,Qi M Q,Yang J,Shen X P,Zhai J Q,Xu W Z,Jin B B,Liu W W,Feng Y J,Zhang C H,Lu H,Chen H T,Kang L,Xu W W,Chen J,Cui T J,Wu P H,Liu S G 2015 Adv.Opt.Mater.3 1374
    [33]Yan X,Liang L J,Liu W W,Ding X,Yang J,Xu D G,Zhang Y T,Cui T J,Yao J Q 2015 Opt.Express 2329128
    [34]Yan X,Liang L J,Zhang Y T,Ding X,Yao J Q 2015Acta Phys.Sin.64 158101(in Chinese)[闫昕,梁兰菊,张雅婷,丁欣,姚建铨2015物理学报64 158101]
    [35]Hanson G W 2008 J.Appl.Phys.103 064302
    [36]Gómez-Díaz J S,Perruisseau-Carrier J 2013 Opt.Express 21 15490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700