高分散纳米银催化剂一锅高效催化生物质基甘油和苯胺合成3-甲基吲哚
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-Pot Efficient Synthesis of 3-Methylindole from Biomass-Derived Glycerol with Aniline by Highly Dispersible Nanosilver Catalyst
  • 作者:郝文文 ; 赵丹 ; 李延春 ; 楚文玲 ; 吕成伟 ; 石雷
  • 英文作者:HAO Wenwen;ZHAO Dan;LI Yanchun;CHU Wenling;Lü Chengwei;SHI Lei;College of Chemistry and Chemical Engineering,Liaoning Normal University;Institute of Theoretical Chemistry,Jilin University;State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences;
  • 关键词:ZnO ; Ag/SiO_2 ; 3-甲基吲哚 ; 生物质基甘油 ; 催化性能
  • 英文关键词:ZnO;;Ag/SiO_2;;3-methylindole;;biomass-derived glycerol;;catalytic performance
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:辽宁师范大学化学化工学院;吉林大学理论化学研究所;中国科学院大连化学物理研究所催化基础国家重点实验室;
  • 出版日期:2019-04-10
  • 出版单位:应用化学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(21576128,21604031,21403100)资助项目~~
  • 语种:中文;
  • 页:YYHX201904011
  • 页数:9
  • CN:04
  • ISSN:22-1128/O6
  • 分类号:106-114
摘要
将ZnO改性的高分散纳米银催化剂(Ag/SiO_2-ZnO)成功地用于生物质基甘油与苯胺一锅高效合成3-甲基吲哚的反应中。通过X射线衍射(XRD)、透射电子显微镜(TEM)、氢气程序升温还原(H_2-TPR)、氨气和二氧化碳程序升温脱附(NH_3-TPD或CO_2-TPD)、热重(TG)分析和电感耦合等离子体(ICP)发射光谱技术手段研究了银基催化剂的结构和性能。结果表明,向Ag/SiO_2-ZnO催化剂加入ZnO助剂能增强银与载体之间的相互作用,使银粒子可以牢固地锚定在SiO_2-ZnO载体上,不仅提高了银的分散度,而且有效抑制了反应过程中银纳米粒子的聚集或烧结。此外,ZnO还能显著增加银基催化剂的酸性位点及碱性位点,这对甘油氢解生成1,2-丙二醇非常有利,明显促进了3-甲基吲哚的合成。反应16 h,3-甲基吲哚收率高达64%,催化剂重复使用4次,收率仅降低4%。另外,提出了甘油和苯胺在Ag/SiO_2-ZnO催化剂上合成3-甲基吲哚的机理,其中1,2-丙二醇是制备3-甲基吲哚的中间体。
        A highly dispersible nanosilver catalyst of ZnO modified Ag/SiO_2 was successfully applied to the one-pot efficient synthesis of 3-methylindole from aniline and biomass-derived glycerol for the first time. The catalyst exhibited an excellent catalytic performance. The investigations of Ag-based catalysts via X-ray diffraction( XRD), transmission electron microscopy( TEM), temperature programmed reduction of H_2( H_2-TPR),temperature programmed desorption( TPD) of NH_3 or CO_2,thermogravimetric( TG) analysis and inductively coupled plasma( ICP) emission spectroscopy indicate that ZnO can enhance the interaction between silver and the support and make Ag particles be firmly anchored on the support of SiO_2-ZnO. As a result,not only the dispersion of silver is increased obviously,but also the aggregation or sintering of silver nanoparticles is inhibited effectively. In addition,ZnO can also increase the acid and base sites of the Ag-based catalyst significantly,which is very beneficial to the hydrogenolysis of glycerol to 1,2-propanediol and promoted the synthesis of 3-methylindole greatly. The yield of 3-methylindole is up to 64% at the reaction time of 16 h and is only decreased by 4% after Ag/SiO_2-ZnO is reused four times. Furthermore,the synthesis mechanism of3-methylindole from glycerol and aniline over Ag/SiO_2-ZnO catalyst was proposed,in which 1,2-propanediol is the intermediate to produce 3-methylindole.
引文
[1]Zhang M Z,Chen Q,Yang G F. A Review on Recent Developments of Indole-Containing Antiviral Agents[J]. Eur J Med Chem,2015,89:421-441.
    [2]Cho I,Jeon N J,Kwon O K,et al. Indolo[3,2-B]Indole-Based Crystalline Hole-Transporting Material for Highly Efficient Perovskite Solar Cells[J]. Chem Sci,2017,8(1):734-741.
    [3]Liu D Y,Huo X M,Liu J,et al. The Role of La2O3and Ce O2Promoters in the Ag/Si O2-Zn O Catalyst for the Vapor Phase Synthesis of Indole[J]. React Kinet Mech Catal,2010,99(2):335-343.
    [4]Siwach P,Singh S,Gupta R K. Vapor Phase Alkylation of Indole with Methanol and Dimethylcarbonate over Ni-Mn Based Ferrospinels[J]. Catal Commun,2009,10(12):1577-1581.
    [5]Zhou Z,Li Y,Gong L,et al. Enantioselective 2-Alkylation of 3-Substituted Indoles with Dual Chiral Lewis Acid/HydrogenBond-Mediated Catalyst[J]. Org Lett,2017,19(1):222-225.
    [6]Deslandes B,Gariépy C,Houde A. Review of Microbiological and Biochemical Effects of Skatole on Animal Production[J].Livest Prod Sci,2001,71(2/3):193-200.
    [7]Hughes D T,Pelletier J,Luetje C W,et al. Odorant Receptor from the Southern House Mosquito Narrowly Tuned to the Oviposition Attractant Skatole[J]. J Chem Ecol,2010,36(8):797-800.
    [8]Simoneau C A,Strohl A M,Ganem B. One-Pot Synthesis of Polysubstituted Indoles from Aliphatic Nitro Compounds under Mild Conditions[J]. Tetrahedron Lett,2007,48(10):1809-1811.
    [9]Robinson B. The Fischer Indole Synthesis[J]. Chem Rev,1963,63(4):373-401.
    [10]Magnus P,Mitchell I S. Synthesis of 3-Methylindoles from N-Aryl-N-(3-Triisopropyl Silylpropargyl)Sulfonamides[J].Tetrahedron Lett,1998,39(26):4595-4598.
    [11]Yu J,Xu J,Yu Z,et al. A Continuous-Flow Fischer Indole Synthesis of 3-Methylindole in an Ionic Liquid[J]. J Flow Chem,2017,7(2):33-36.
    [12]Ritter S K. Biomass or Bust[J]. Chem Eng News,2004,82(22):31-32.
    [13]Sabri Faezeh,Idem R,Ibrahim H. Metal Oxide-Based Catalysts for the Autothermal Reforming of Glycerol[J]. Ind Eng Chem Res,2018,57(7):2486-2497.
    [14]ZHAO Jing,YU Weiqiang,LI Decai,et al. Catalytic Dehydration-Hydrogenation of Glycerol to 1,2-Propylene Glycol at Ambient Hydrogen Pressure[J]. Chinese J Catal,2010,31(2):74-78(in Chinese).赵静,于维强,李德财,等.常压两步法催化丙三醇脱水-加氢制备1,2-丙二醇[J].催化学报,2010,31(2):74-78.
    [15]Sun W,Liu D Y,Zhu H Y,et al. A New Efficient Approach to 3-Methylindole:Vapor-Phase Synthesis from Aniline and Glycerol over Cu-Based Catalyst[J]. Catal Commun,2010,12(2):147-150.
    [16]Cui Y X,Zhou X S,Sun Q,et al. Vapor-Phase Synthesis of 3-Methylindole from Glycerol and Aniline over ZeolitesSupported Cu-Based Catalysts[J]. J Mol Catal A:Chem,2013,378:238-245.
    [17]BAO Zhuoran,CUI Yanxi,SUN Peng,et al. Vapor-Phase Synthesis of 3-Methylindole from Glycerol and Aniline over Cu/Si O2-Al2O3Catalyst Modified by Co or Ni[J]. Acta Phys-Chim Sin,2013,29(11):2444-2450(in Chinese).包卓然,崔艳喜,孙鹏,等. Co或Ni促进的Cu/Si O2-Al2O3催化剂上丙三醇和苯胺气相合成3-甲基吲哚[J].物理化学学报,2013,29(11):2444-2450.
    [18]BAO Zhuoran,HUO Xiaomin,SUN Lidong,et al. Efficient Vapor-Phase Synthesis of 3-Methylindole over Fe Promoted Cu/Si O2-Al2O3Catalyst[J]. Chinese J Appl Chem,2013,30(10):1156-1162(in Chinese).包卓然,霍晓敏,孙立冬,等.铁促进的Cu/Si O2-Al2O3催化剂上高效气相合成3-甲基吲哚[J].应用化学,2013,30(10):1156-1162.
    [19]Wen C,Yin A,Dai W L. Recent Advances in Silver-Based Heterogeneous Catalysts for Green Chemistry Processes[J].Appl Catal B:Environ,2014,160/161:730-741.
    [20]Abdel Dayem H M,Al-Shihry S S,Hassan S A. Selective Methanol Oxidation to Hydrogen over Ag/Zn O Catalysts Doped with Mono-and Bi-Rare Earth Oxides[J]. Ind Eng Chem Res,2014,53(51):19884-19894.
    [21]Liu S,Wu X,Liu W,et al. Soot Oxidation over Ce O2and Ag/Ce O2:Factors Determining the Catalyst Activity and Stability During Reaction[J]. J Catal,2016,337:188-198.
    [22]LV Wenhui,LIU Xinghui,LIU Dongyan,et al. Vapor-Phase Synthesis of 3-Methylindole over Fe-,Co-,or Ni-Promoted Ag/Si O2Catalysts[J]. Chinese J Catal,2009,30(12):1287-1290(in Chinese).吕文辉,刘兴海,刘冬妍,等.铁、钴或镍助剂促进的Ag/Si O2催化剂上气相催化合成3-甲基吲哚[J].催化学报,2009,30(12):1287-1290.
    [23]Liu J,Li X,Zhao Q,et al. Mechanistic Investigation of the Enhanced NH3-SCR on Cobalt-Decorated Ce-Ti Mixed Oxide:In Situ FTIR Analysis for Structure-Activity Correlation[J]. Appl Catal B:Environ,2017,200:297-308.
    [24]Kusunoki Y,Miyazawa T,Kunimori K,et al. Highly Active Metal Acid Bifunctional Catalyst System for Hydrogenolysis of Glycerol under Mild Reaction Conditions[J]. Catal Commun,2005,6(10):645-649.
    [25]Feng J,Wang J,Zhou Y,et al. Effect of Base Additives on the Selective Hydrogenolysis of Glycerol over Ru/Ti O2Catalyst[J]. Chem Lett,2007,36(10):1274-1275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700