基于铁锰泥的除砷吸附剂性能比较及吸附机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance comparison and adsorption mechanism of arsenic removal adsorbents made of backwashing sludge from biofilter for iron and manganese removal
  • 作者:曾辉平 ; 尹灿 ; 李冬 ; 吕赛赛 ; 赵运新 ; 张杰
  • 英文作者:ZENG Hui-ping;YIN Can;LI Dong;LV Sai-sai;ZHAO Yun-xin;ZHANG Jie;Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering,Beijing University of Technology;State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology;
  • 关键词:反冲洗泥 ; 颗粒吸附剂 ; 磁性粉末吸附剂 ; 除砷 ; 吸附
  • 英文关键词:backwashing sludge powder adsorbent;;granular adsorbent;;magnetic powder adsorbent;;arsenic removal;;adsorption
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京工业大学水质科学与水环境恢复工程北京市重点试验室;哈尔滨工业大学城市水资源与水环境国家重点试验室;
  • 出版日期:2018-09-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金优秀青年科学基金资助项目(51308009)
  • 语种:中文;
  • 页:ZGHJ201809027
  • 页数:7
  • CN:09
  • ISSN:11-2201/X
  • 分类号:175-181
摘要
为解决反冲洗铁锰泥粉末吸附剂(BSPA)使用后难以泥水分离问题,将除铁锰水厂生物滤池产生的反冲洗泥制成颗粒吸附剂(GA)和磁性粉末吸附剂(MPA),并对BSPA、GA和MPA的除砷性能进行了比较,通过SEM、TED、XRD、BET、FTIR等技术对3种材料进行了表征,寻找3种吸附剂之间除砷性能差异的根源.结果表明,BSPA、GA和MPA对As(V)的最大吸附容量分别为40.980,5.048,8.694mg/g,改性后的吸附材料GA和MPA对砷的吸附能力下降.BSPA是一种以纤铁矿为主的无定形结构混合物,并混有针铁矿和结晶度差的水铁矿,GA的XRD图谱中出现石英晶体和少量赤铁矿晶体的衍射峰,而MPA的主要成分为结晶程度较高的磁赤铁矿.3种材料中均存在有利于吸附的含羟基官能团.BSPA、MPA和GA的比表面积分别为253.150,238.660,43.803m~2/g.物相改变且结晶程度增加、表面羟基减少和比表面积降低是导致GA和MPA的砷吸附容量比BSPA低的主要因素.
        The backwashing residuals from iron and manganese removal biological filter of underground waters was made into granular adsorbent(GA) and magnetic powder adsorbent(MPA) to solve the problem that it is difficult to separate the exhausted backwashing sludge powder adsorbent(BSPA) and treated water. The arsenic removal capability of BSPA、GA and MPA were compared. And their structure and surface feature were compared by SEM, TED, XRD, BET and FTIR to find the cause of difference in arsenic removal capability among these three adsorbents. Results showed that the maximum As(V) adsorption capacity of BSPA, GA and MPA were 40.980, 5.048 and 8.694 mg/g respectively. As it suggested, the As(V) adsorption capacity of GA and MPA decreased compared to BSPA. BSPA was a mixture with amorphous structure, lepidocrocite was the main ingredient, goethite and poor crystallized ferrihydrite also mixed in it. The XRD spectrum of GA appeared crystal diffraction peaks of quartz crystal and a small amount of hematite, while the main component of MPA was maghemite with high crystallinity. There are hydroxyl functional groups that are conducive to adsorption in all three materials. The specific surface areas of BSPA, MPA and GA were 253.150, 238.660 and 43.803 m~2/g respectively. Phase changes and increase of crystallinity, reduction of surface hydroxyl group and decrease of specific surface area may be the main factors lower the adsorption capacity of GA and MPA compared with BSPA.
引文
[1]邓安琪,董兆敏,高群,等.中国地下水砷健康风险评价[J].中国环境科学,2017,37(9):3556-3565.
    [2]Shan C,Tong M.Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide[J].Water Research,2013,47(10):3411-3421.
    [3]王颖,吕斯丹,李辛,等.去除水体中砷的研究进展与展望[J].环境科学与技术,2010,33(9):102-107.
    [4]王振红,罗专溪,车霏霏,等.不同磷水平下铜绿微囊藻对砷酸盐的吸收和净化[J].中国环境科学,2015,35(2):533-538.
    [5]张明月,曾辉平,吕育锋,等.高铁盐与亚铁盐混凝除As(Ⅲ)性能的对比研究[J].中国环境科学,2017,37(5):1798-1804.
    [6]Ociński D,Jacukowicz-Sobala I,Mazur P,et al.Water treatment residuals containing iron and manganese oxides for arsenic removal from water-characterization of physicochemical properties and adsorption studies[J].Chemical Engineering Journal,2016,294:210-221.
    [7]赵雅光,万俊锋,王杰,等.零价铁(ZVI)去除水中的As(Ⅲ)[J].化工学报,2015,(2):251-258.DOI:10.11949/j.issn.0438-1157.
    [8]肖静,田凯勋,高怡.载铁活性炭吸附剂的制备及除砷(Ⅲ)性能研究[J].工业水处理,2012,32(11):28-32.
    [9]Shams A B.铁/铁氧化物改性复合吸附材料的制备及其除砷性能和机理研究[D].杭州:浙江大学,2015.
    [10]李冬.生物除铁除锰理论与工程应用技术研究[D].北京:北京工业大学,2004.
    [11]方帅,刘志强,陈瑜,等.铁泥溶剂热法制备磁性材料及其在水溶液中对亚甲基蓝的吸附性[J].中国有色金属学报,2015,25(4):1109-1115.
    [12]刘卓,张小梅,肖才林,等.利用天然磁黄铁矿去除水中As(V)的研究[J].环境科学学报,2016,36(10):3701-3708.
    [13]赵凯,郭华明,李媛,等.天然菱铁矿改性及强化除砷研究[J].环境科学,2012,33(2):459-468.
    [14]Zhu J,Baig S A,Sheng T,et al.Fe3O4 and Mn O2 assembled on honeycomb briquette cinders(HBC)for arsenic removal from aqueous solutions[J].Journal of Hazardous Materials,2015,286:220-228.
    [15]Almasri D A,Rhadfi T,Atieh M A,et al.High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal[J].Chemical Engineering Journal,2018,335(Supplement C):1-12.
    [16]秦艳敏,梁美娜,王敦球,等.桑树杆生物炭/铁锰氧化物复合吸附剂的制备及其对As(Ⅴ)的吸附机理研究[J].农业环境科学学报,2016,35(7):1398-1406.
    [17]闵伶俐,郑煜铭,钟鹭斌,等.铁氧化物/壳聚糖复合纳米纤维的制备及吸附五价砷研究[J].环境科学学报,2014,34(12):2979-2984.
    [18]Lin S,Yang H,Na Z,et al.A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide(Fe OOH)on the root powder of long-root eichhornia crassipes[J].Chemosphere,2018,192(Supplement C):258-266.
    [19]邹昊辰.硅藻土负载铁氧化物对砷吸附的研究[D].长春:吉林大学,2013.
    [20]Wang T,Zhang L,Wang H,et al.Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly(diallyldimethylammonium chloride)and their application in arsenic removal[J].Applied Materials&Interfaces,2013,5(23):12449-12459.
    [21]Zhong L S,Hu J S,Liang H P,et al.Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J].Advanced Materials,2006,18(18):2426-2431.
    [22]Wu Z,Li W,Webley P A,et al.Chem Inform abstract:general and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal[J].Advanced Materials,2012,43(14):485-491.
    [23]Jin Y,Liu F,Tong M,et al.Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles[J].Journal of Hazardous Materials,2012,227-228:461-468.
    [24]Feng L,Cao M,Ma X,et al.Superparamagnetic high-surface-area Fe3O4nanoparticles as adsorbents for arsenic removal[J].Journal of Hazardous Materials,2012,217-218:439-446.
    [25]王小明,杨凯光,孙世发,等.水铁矿的结构、组成及环境地球化学行为[J].地学前缘,2011,18(2):339-347.
    [26]Shen L,Cao Y,Du Z,et al.Illuminate the active sites ofγ-Fe OOH for low-temperature desulfurization[J].Applied Surface Science,2017,425:212-219.
    [27]王慧玮.双酚A在不同铁矿物上的吸附行为研究[D].北京:中国地质大学(北京),2016.
    [28]熊慧欣,周立祥.不同晶型羟基氧化铁(Fe OOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J].岩石矿物学杂志,2008,27(6):559-566.
    [29]豆小敏,于新,赵蓓,等.5种铁氧化物去除As(V)性能的比较研究[J].环境工程学报,2010,4(9):1989-1994.
    [30]Jain A,Raven K P,Loeppert R H.Arsenite and arsenate adsorption on ferrihydrite:surface charge reduction and net OH-release stoichiometry[J].Environmental Science&Technology,1999,33(8):1179-1184.
    [31]常方方.包覆型除砷吸附剂制备及其净水性能研究[D].北京:中国科学院生态环境研究中心,2009.
    [32]Pecini E M,Springer V,Brigante M,et al.Arsenate interaction with the surface of nanomagnetic particles.High adsorption or full release[J].Journal of Environmental Chemical Engineering,2017,5(5):4917-4922.
    [33]曾辉平,赵运新,吕育锋,等.水厂反冲洗铁锰泥热处理产物结构及除砷变化[J].中国环境科学,2017,37(8):2986-2993.
    [34]李小飞,李一菲,钱天伟.淀粉稳定Fe3O4纳米粒子对水中As(V)的吸附特性研究[J].环境科学学报,2016,36(9):3222-3229.
    [35]Qi J,Zhang G,Li H.Efficient removal of arsenic from water using a granular adsorbent:Fe-Mn binary oxide impregnated chitosan bead[J].Bioresource Technology,2015,193(Supplement C):243-249.
    [36]Mayo J T,Yavuz C,Yean S,et al.The effect of nanocrystalline magnetite size on arsenic removal[J].Science and Technology of Advanced Materials,2007,8(1):71-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700