模拟增温对中亚热带杉木人工林土壤磷有效性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of simulated warming on soil phosphorus availability in subtropical Chinese fir plantation
  • 作者:贝昭贤 ; 张秋芳 ; 郑蔚 ; 杨柳明 ; 陈岳民 ; 杨玉盛
  • 英文作者:BEI Zhaoxian;ZHANG Qiufang;ZHENG Wei;YANG Liuming;CHEN Yuemin;YANG Yusheng;School of Geographical Science,Fujian Normal University;Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology;
  • 关键词:磷有效性 ; 增温 ; 杉木人工林 ; 亚热带 ; 森林土壤
  • 英文关键词:phosphorus availability;;warming;;Chinese fir plantation;;subtropical zone;;forest soil
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学地理科学学院;湿润亚热带山地生态国家重点实验室培育基地;
  • 出版日期:2017-10-18 11:34
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:“973”计划(2014CB954003);; 国家自然科学基金青年基金项目(31300523)
  • 语种:中文;
  • 页:STXB201803035
  • 页数:8
  • CN:03
  • ISSN:11-2031/Q
  • 分类号:369-376
摘要
气候变暖改变与土壤磷循环相关的生物地球化学过程,对陆地生态系统磷循环产生直接或间接影响。为研究亚热带地区杉木人工林土壤磷有效性对增温的响应,开展了模拟增温实验。实验设置对照组及增温组(5℃),经过1.5a的短期增温,对杉木人工林的土壤全磷、有机磷、微生物量磷、有效磷、酸性磷酸酶活性及相关土壤理化性质进行测定,结果表明:增温处理下,土壤酸性磷酸酶活性提高约1.5倍,土壤全磷、微生物量磷以及有机磷含量分别减少了6%、34%和12%,土壤有效磷含量增加25%。可见,短期增温通过提高土壤磷酸酶活性进而促进土壤有机磷矿化和降低土壤微生物固磷量,从而增加土壤磷有效性,但是增温导致潜在可利用的土壤微生物量磷大幅度的降低,将有可能加剧亚热带杉木人工林土壤磷限制。
        Phosphorus(P),one of the most important nutrients in soil,is essential for plant growth,and plays a significant role in maintaining the balance of forest ecosystems. Furthermore,soil P availability is controlled mainly by geochemical and biological processes and can be vulnerable to global climate change. Warming,which has become one of the most important topics of current study,directly and indirectly alters soil P cycling in terrestrial ecosystems; however,to date,most studies have focused on nitrogen deficiency in temperate ecosystems,and have produced inconsistent results regarding the responses of soil P dynamics. Few relevant studies have been conducted in P-deficient tropical and subtropical forest ecosystems. In order to study the potential impacts of warming on soil P fractions related to P availability,we simulated warming in a subtropical Chinese fir plantation,and undertook sampling after one and a half years of short-term warming. The result showed that soil acid phosphatase in the warming treatment was 1.5 times higher compared to that in the control treatment,and that soil available P had increased by 25%,whereas soil total P,microbial P,and organic P had declined by 6%,34%,and 12%,respectively. The increased soil P availability after short-term soil warming is mainly attributed to an increase in acid phosphatase activity that can promote mineralization of soil organic P,and to the reduced P immobilization of microbe. Despite the increase in soil available P after short-term warming,the significant decrease in microbial P,which is potentially available for plants,is likely to exacerbate P limitation in subtropical Chinese firplantations. The findings of this study indicate that more attention should be paid to the responses of soil P to climate warming in the subtropical zone and highlight the need for further research.
引文
[1]Fisk M,Santangelo S,Minick K.Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests.Soil Biology and Biochemistry,2015,81:212-218.
    [2]Chen H,Dong S F,Liu L,Ma C,Zhang T,Zhu X M,Mo J M.Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest.Plo S One,2013,8(12):e84101.
    [3]Cleveland C C,Reed S C,Townsend A R.Nutrient regulation of organic matter decomposition in a tropical rain forest.Ecology,2006,87(2):492-503.
    [4]Herbert D A,Fownes J H.Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil.Biogeochemistry,1995,29(3):223-235.
    [5]Wood T E,Matthews D,Vandecar K,Lawrence D.Short-term variability in labile soil phosphorus is positively related to soil moisture in a humid tropical forest in Puerto Rico.Biogeochemistry,2016,127(1):35-43.
    [6]Zhang W Q,Zwiazek J J.Responses of reclamation plants to high root zone p H:effects of phosphorus and calcium availability.Journal of Environmental Quality,2016,45(5):1652-1662.
    [7]Jalali M,Jalali M.Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture.Science of The Total Environment,2016,566-567:1080-1093.
    [8]Huang W J,Liu J X,Wang Y P,Zhou G Y,Han T F,Li Y.Increasing phosphorus limitation along three successional forests in southern China.Plant and Soil,2013,364(1/2):181-191.
    [9]Wassen M J,Venterink H O,Lapshina E D,Tanneberger F.Endangered plants persist under phosphorus limitation.Nature,2005,437(7058):547-550.
    [10]Chen C R,Condron L M,Sinaj S,Davis M R,Sherlock R R,Frossard E.Effects of plant species on phosphorus availability in a range of grassland soils.Plant and Soil,2003,256(1):115-130.
    [11]詹书侠,陈伏生,胡小飞,甘露,朱友林.中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性.生态学报,2009,29(9):4673-4680.
    [12]Intergovernmental Panel on Climate Change.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Working Group I:Contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report.Cambridge,United Kingdom,New York,NY,USA:Cambridge University Press,Cambridge,UK:IPCC,2013.
    [13]Mc Gill W B,Cole C V.Comparative aspects of cycling of organic C,N,S and P through soil organic matter.Geoderma,1981,26(4):267-286.
    [14]Verburg P S J,Van Dam D,Hefting M M,Tietema A.Microbial transformations of C and N in a boreal forest floor as affected by temperature.Plant and Soil,1999,208(2):187-197.
    [15]Domisch T,Finér L,Lehto T,Smolander A.Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings.Plant and Soil,2002,239(2):173-185.
    [16]Frey S D,Drijber R,Smith H,Melillo J.Microbial biomass,functional capacity,and community structure after 12 years of soil warming.Soil Biology and Biochemistry,2008,40(11):2904-2907.
    [17]Frey S D,Knorr M,Parrent J L,Simpson R T.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests.Forest Ecology and Management,2004,196(1):159-171.
    [18]Joergensen R G,Brookes P C,Jenkinson D S.Survival of the soil microbial biomass at elevated temperatures.Soil Biology and Biochemistry,1990,22(8):1129-1136.
    [19]Rui Y C,Wang Y F,Chen C,Zhou X Q,Wang S P,Xu Z H,Duan J C,Kang X M,Lu S H,Luo C Y.Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau,China.Plant and soil,2012,357(1/2):73-87.
    [20]Sumann M,Amelung W,Haumaier L,Zech W.Climatic effects on soil organic phosphorus in the North American Great Plains identified by phosphorus-31 nuclear magnetic resonance.Soil Science Society of America Journal,1998,62(6):1580-1586.
    [21]Menge D N L,Field C B.Simulated global changes alter phosphorus demand in annual grassland.Global Change Biology,2007,13(12):2582-2591.
    [22]Rinnan R,Michelsen A,Bth E,Jonasson S.Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter.Soil Biology and Biochemistry,2007,39(12):3014-3023.
    [23]Sardans J,Pe1uelas J,Estiarte M.Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland.Plant and Soil,2006,289(1/2):227-238.
    [24]Butler S M,Melillo J M,Johnson J E,Mohan J,Steudler P A,Lux H,Burrows E,Smith R M,Vario C L,Scott L,Hill T D,Aponte N,Bowles F.Soil warming alters nitrogen cycling in a New England forest:implications for ecosystem function and structure.Oecologia,2012,168(3):819-828.
    [25]Zhang N Y,Guo R,Song P,Guo J X,Gao Y Z.Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe,northeastern China.Soil Biology and Biochemistry,2013,65:96-104.
    [26]孙本华,胡正义,吕家珑,周丽娜,徐成凯.大气氮沉降对阔叶林红壤淋溶水化学模拟研究.生态学报,2006,26(6):1872-1881.
    [27]Cavaleri M A,Reed S C,Smith W K,Wood T E.Urgent need for warming experiments in tropical forests.Global Change Biology,2015,21(6):2111-2121.
    [28]曹娟,闫文德,项文化,谌小勇,雷丕锋,向建林.湖南会同不同年龄杉木人工林土壤磷素特征.生态学报,2014,34(22):6519-6527.
    [29]Hou E Q,Chen C R,Mc Groddy M E,Wen D Z.Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.Plo S One,2012,7(12):e52071.
    [30]Turner B L,Yavitt J B,Harms K E,Garcia M N,Romero T E,Wright S J.Seasonal changes and treatment effects on soil inorganic nutrients following a decade of fertilizer addition in a lowland tropical forest.Soil Science Society of America Journal,2013,77(4):1357-1369.
    [31]张秋芳,吕春平,贝昭贤,谢锦升,林伟盛,陈岳民,杨玉盛.野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响.植物生态学报,2016,40(12):1230-1237.
    [32]陈仕东,刘小飞,熊德成,林伟盛,林成芳,谢麟,杨玉盛.持续性主动增温对中亚热带森林土壤呼吸影响研究初报.亚热带资源与环境学报,2013,8(4):1-8.
    [33]Carter M R,Gregorich E G.Soil Sampling and Methods of Analysis.Florida:The Chemical Rubber Company Press,1993:637-644.
    [34]Keeney D R A,Nelson D W.Nitrogen-inorganic forms//Page AL,Miller R H,Keeney DR,eds.Methods of Soil Analysis.Part 2.Chemical and Microbiological Properties.2nded.Madison,WI:American society of Agronomy,1982:643-698.
    [35]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000:166-169.
    [36]Mehlich A.Mehlich 3 soil test extractant:A modification of Mehlich 2 extractant.Communications in Soil Science and Plant Analysis,1984,15(12):1409-1416.
    [37]Walker T W,Adams A F R.Studies on Soil Organic Matter:I.Influence of Phosphorus Content of Parent Materials on Accumulations of Carbon,Nitrogen,Sulfur,and Organic Phosphorus in Grassland Soils.Soil Science,1958,85(6):307-318.
    [38]Saiya-Cork K R,Sinsabaugh R L,Zak D R.The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil.Soil Biology and Biochemistry,2002,34(9):1309-1315.
    [39]Zhou X Q,Chen C R,Wang Y F,Xu Z H,Han H Y,Li L H,Wan S Q.Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland.Science of the Total Environment,2013,444:552-558.
    [40]赵琼,曾德慧.陆地生态系统磷素循环及其影响因素.植物生态学报,2005,29(1):153-163.
    [41]陈建会,邹晓明,杨效东.热带亚热带常绿阔叶林维持酸性土壤有效磷水平的磷转化过程.生态学报,2006,26(7):2294-2300.
    [42]姜一,步凡,张超,陈立新.土壤有机磷矿化研究进展.南京林业大学学报:自然科学版,2014,38(3):160-166.
    [43]Turner B L,Haygarth P M.Biogeochemistry:phosphorus solubilization in rewetted soils.Nature,2001,411(6835):258-258.
    [44]张卫建,许泉,王绪奎,卞新民.气温上升对草地土壤微生物群落结构的影响(英文).生态学报,2004,24(8):1742-1747.
    [45]Allison S D,Treseder K K.Warming and drying suppress microbial activity and carbon cycling in boreal forest soils.Global Change Biology,2008,14(12):2898-2909.
    [46]Bünemann E K,Keller B,Hoop D,Jud K,Boivin P,Frossard E.Increased availability of phosphorus after drying and rewetting of a grassland soil:processes and plant use.Plant and soil,2013,370(1/2):511-526.
    [47]Dalling J W,Heineman K,Lopez O R,Wright S J,Turner B L.Nutrient availability in tropical rain forests:the paradigm of phosphorus limitation//Goldstein G,Santiago L S,eds.Tropical Tree Physiology.Switzerland:Springer International Publishing,2016:261-273.
    [48]Wick B,Kühne R F,Vlek P L G.Soil microbiological parameters as indicators of soil quality under improved fallow management systems in southwestern Nigeria.Plant and Soil,1998,202(1):97-107.
    [49]Chen C R,Condron L M,Davis M R,Sherlock R R.Effects of plant species on microbial biomass phosphorus and phosphatase activity in a range of grassland soils.Biology and Fertility of Soils,2004,40(5):313-322.
    [50]Kang H,Freeman C.Phosphatase and arylsulphatase activities in wetland soils:annual variation and controlling factors.Soil Biology and Biochemistry,1999,31(3):449-454.
    [51]熊德成,刘小飞,陈仕东,林伟盛,林廷武,林成芳,陈光水,杨玉盛.土壤增温对杉木幼苗细根形态特征的影响.亚热带资源与环境学报,2014,9(3):89-91.
    [52]Allison S D,Vitousek P M.Responses of extracellular enzymes to simple and complex nutrient inputs.Soil Biology and Biochemistry,2005,37(5):937-944.
    [53]陈美领,陈浩,毛庆功,朱晓敏,莫江明.氮沉降对森林土壤磷循环的影响.生态学报,2016,36(16):4965-4976.
    [54]Yang K,Zhu J J,Gu J C,Yu L Z,Wang Z Q.Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation.Annals of Forest Science,2015,72(4):435-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700