GH3625合金无缝管材组织及性能调控研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructures and Properties of GH3625 Alloy Tubes in Various States with Solution Treatment
  • 作者:丁雨田 ; 王兴茂 ; 孟斌 ; 高钰璧 ; 马元俊
  • 英文作者:Ding Yutian;Wang Xingmao;Meng Bin;Gao Yubi;Ma Yuanjun;State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,College of Material Science and Technology,Lanzhou University of Technology;
  • 关键词:GH3625合金 ; 固溶处理 ; 显微组织 ; 力学性能
  • 英文关键词:GH3625 alloy;;solution treatment;;microstructure;;mechanical properties
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:兰州理工大学材料科学与工程学院兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室;
  • 出版日期:2018-06-01 14:01
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.276
  • 基金:国家自然科学基金项目(51661019);; 甘肃省重大科技专项项目(145RTSA004)资助
  • 语种:中文;
  • 页:ZXJS201903007
  • 页数:9
  • CN:03
  • ISSN:11-2111/TF
  • 分类号:53-61
摘要
以GH3625合金冷轧管材为研究对象,通过组织表征和性能测试(硬度测试和室温拉伸实验),研究了固溶处理参数对GH3625合金晶粒长大行为和力学性能的影响。结果表明:随固溶温度的不断升高,基体内碳化物逐渐溶解,当温度高于1130℃时,基体内碳化物几乎完全溶解且晶粒开始快速长大,在950~1250℃温度范围内晶粒长大激活能为208.60 kJ·mol~(-1),合金的硬度则随着温度的升高而持续下降,且在晶粒长大过程中合金的硬度值与平均晶粒尺寸符合Hall-Petch关系式。随保温时间的延长,晶粒长大速度先快速增加随后逐渐平稳,当保温时间为20 min时基本上完成再结晶;在此过程中合金的硬度变化并不明显。空冷和水冷后合金的平均晶粒尺寸未发生变化,硬度随冷却速度的增加而增大。最佳固溶处理工艺为1150℃/60 min/AC,室温拉伸断裂方式为韧性断裂,综合力学性能良好。
        The influence of solution treatment temperature on microstructural evolution and mechanical properties of the GH3625 alloy tubes in various states(hot extrusion, cold rolled and annealed) were investigated by microstructural characterization and performance tests(hardness test and tensile test at room temperature). The effects of solution treatment parameters(solution temperature, holding time and cooling method) on the microstructure and properties of GH3625 alloy tube were studied. The results showed that with the increase of solid solution temperature, the carbides in the matrix gradually dissolved. When the temperature was higher than 1130 ℃, the carbides in the matrix almost completely dissolved and the grains began to rapidly grow. When the temperature was at the ranges of 950 and 1250 ℃, grain growth activation energy reached at 208.60 kJ·mol~(-1). Hardness declined during the process of heat treatment temperature increased, and its values and the average grain size of the alloy kept in line with Hall-Petch relation. With the change of holding time, the grain growth rate first rapidly increased and then gradually became stable. When the holding time was 20 min, static recrystallization was basically completed. The change of hardness of the alloy was not obvious in this process. After air cooling and water cooling, the average grain size of the alloy remained unchanged and the hardness increased with the increase of cooling rate.
引文
[1] Floreen S,Fuchs G E,Yang W J.Superalloys,The Metallurgy of Alloy 625 [M].New York:The Minerals,Metals & Materials Society,1994.14.
    [2] Ye J.Nickel Base Superalloy [M].Beijing:Science Press,1978.228.(冶军.美国镍基高温合金 [M].北京:科学出版社,1978.228.)
    [3] China Aeronautical Materials Handbook Compile Committee.China Aeronautical Materials Handbook [M].Beijing:Standards Press of China,2002.238.(中国航空材料手册委员会.中国航空材料手册 [M].北京:中国标准出版社,2002.238.)
    [4] Rizzo FJ,Floreen S.PM alloy 625M for high strength corrosion resistant applications [A].Superalloys 718,625,706 and Various Derivatives [M].Warrendale,PA:TMS,1997.776.
    [5] Sundararaman M,Mukhopadhyay P,Banerjee S.Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties [A].Superalloys 718,625,706 and Various Derivatives [M].Warrendale,PA:TMS,1997.367.
    [6] Zhang H B.Inconel 625 alloy progress abroad [J].Special Steel Technology,2003,(3):69.(张红斌.国外Inconel 625合金的进展 [J].特钢技术,2000,(3):69.)
    [7] Guo J T.Materials Science and Engineering for Superollys [M].Beijing:Science Press,2008.95.(郭建亭.高温合金材料学 [M].北京:科学出版社,2008.95.)
    [8] Dong J X.Nickel-based Alloy Tube Extrusion and Microstructure Control [M].Beijing:Metallurgical Industry Press,2014.12.(董建新.镍基合金管材挤压及组织控制 [M].北京:冶金工业出版社,2014.12.)
    [9] Tian D.Development and production of high-temperature alloy seamless tubulars [J].Steel Pipe,2002,31(3):1.(田党.高温合金无缝管材的研制与生产 [J].钢管,2002,31(3):1.)
    [10] Ou X Z,Yao L,Huang Y P.Influence of solution temperature on the microstructure and mechanical properties of UNS N06625 alloy [J].Metallic Functional Materials,2016,23(2):55.(欧新哲,姚雷,黄妍凭.固溶处理对UNS N06625合金组织和力学性能的影响 [J].金属功能材料,2016,23(2):55.)
    [11] Zheng W J,Xiang J Z,Song Z G.Grain growth behavior of inconel 625 super alloy [J].Steel Research International,2016,23(10):1111.
    [12] Yu Q J,Liu X Y.Inconel 625 alloy heat treatment process [J].Machinist Metal Forming,2012,(9):45.(俞秋景,刘晓岩.Inconel 625合金热处理工艺 [J].金属加工:热加工,2012,(9):45.)
    [13] Ding Y T,Li H F,Wang W,Liu J J,Hu Y,Guo T B.Effect of solution treatment on the microstructure and mechanical properties of GH3625 superalloy sheet [J].Transactions of Materials and Heat Treatment,2015,36(12):84.(丁雨田,李海峰,王伟,刘建军,胡勇,郭廷彪.热处理对GH3625合金管材组织和性能的影响 [J].材料热处理学报,2015,36(12):84.)
    [14] Zhang Q,Wang W J,Shi Y S,Wei Q S.Effects of solution treatment on microstructure and tensile properties of hot isostatic pressed Inoconel 625 alloy [J].Heat Treatment of Metals,2013,38(3):65.(张谦,王基维,史玉升,魏青松.固溶处理对热等静压Inconel 625合金组织与拉伸性能的影响 [J].金属热处理,2013,38(3):65.)
    [15] Fang X D,Han D P,Li Y.Effect of heat treatment on microstructure and mechanical properties of GH3625 alloy [J].Hot Extruded Pipe.Hot Working Technology,2013,42(8):204.(方旭东,韩德培,李阳.热处理对GH625合金热挤压管材组织及力学性能的影响 [J].热加工工艺,2013,42(8):204.)
    [16] Miao W M,Zhao X B.Metal Recrystallization and Grain Growth [M].Beijing:Metallurgical Industry Press,1994.275.(毛卫民,赵新兵.金属的再结晶与晶粒长大 [M].北京:冶金工业出版社,1994.275.)
    [17] Cui J X,Liu B X.Metallurgy and Heat Treatment Theory [M].Harbin:Harbin Institute of Technology Press,2004.160.(崔忠圻,刘北兴.金属学与热处理原理 [M].哈尔滨:哈尔滨工业大学出版社,2004.160.)
    [18] Liu F,Ma J M,Liao J J,Shao Y,Zheng Y,Peng L J.Microstructure and properties of low concentration Cu-Ni-Si alloy with different solution,aging temperature and cold deformation [J].Chinese Journal of Rare Metals,2018,42(4):356.(刘峰,马吉苗,廖骏骏,邵烨,郑芸,彭丽军.固溶时效温度和冷变形对低含量Cu-Ni-Si合金组织性能的影响 [J].稀有金属,2018,42(4):356.)
    [19] Sellars C M,Whiteman J A.Recrystallization and grain growth in hot rolling [J].Metal Science,1978,13(3-4):187.
    [20] Anelli E.Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars [J].ISIJ International,1992,32(3):440.
    [21] Wang Y,Lin L,Shao W Z,Zhen L,Zhang X M.Effect of solid-solution treatment on microstructure and performance of GH4169 superalloy [J].Transactions of Materials and Heat Treatment,2007,28(S1):176.(王岩,林琳,邵文柱,甄良,张新梅.固溶处理对GH4169合金组织与性能的影响 [J].材料热处理学报,2007,28(S1):176.)
    [22] Hull D.Fractography:Observing,Measuring,and Interpreting Fracture Surface Topography [M].Cambridge University Press,1999.83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700