用户名: 密码: 验证码:
氮添加对墨西哥柏人工林土壤碳氮磷化学计量特征及酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of N addition on C,N and P stoichiometry and soil enzyme activities in Cupressus lusitanica Mill. plantation
  • 作者:李瑞瑞 ; 卢艺 ; 王益明 ; 万福绪
  • 英文作者:LI Rui-rui;LU Yi;WANG Yi-ming;WAN Fu-xu;College of Forestry,Nanjing Forestry University,Co-Innovation Centre for Sustainable Forestry in Southern China;
  • 关键词:N添加 ; 墨西哥柏人工林 ; 生态化学计量 ; 土壤酶活性
  • 英文关键词:N supply;;Cupressus lusitanica Mill.plantation;;ecological stoichiometry;;soil enzyme activity
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:南京林业大学林学院南方现代林业协同创新中心;
  • 出版日期:2018-12-06 15:54
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.307
  • 基金:江苏省林业三新工程(LYSX[2015]20);; PAPD项目资助
  • 语种:中文;
  • 页:STXZ201902010
  • 页数:10
  • CN:02
  • ISSN:21-1148/Q
  • 分类号:78-87
摘要
为探讨氮沉降对土壤碳氮磷生态化学计量化学特征及其相关酶活性的影响,在南京林业大学科研教学基地墨西哥柏(Cupressus lusitanica Mill.)人工林设置N0、N1(24 kg·hm~(-2)·a~(-1))、N2(48 kg·hm~(-2)·a~(-1))、N3(72 kg·hm~(-2)·a~(-1))、N4(96 kg·hm~(-2)·a~(-1))和N5(120 kg·hm~(-2)·a~(-1)) 6个不同施N量处理。结果表明:(1)随氮添加量的增加,土壤有机碳(SOC)含量显著增加,并在N4样地达到最大值。土壤可溶性有机碳(DOC)含量在N2、N3样地显著高于对照样地。N2样地土壤全氮(TN)、N/P显著高于对照样地,其余样地之间差异性不显著。N4、N5样地土壤C/N、C/P显著高于对照样地。氮添加对土壤全磷(TP)没有显著影响。(2)在低氮和中氮处理下土壤碳氮磷相关酶活性均出现提高。在高氮处理下,纤维素酶显著低于对照样地,脲酶活性出现降低趋势;而磷酸酶、木质素分解酶及蔗糖酶活性显著提高。(3)聚类分析及因子分析发现,墨西哥柏人工林N添加量最好不超过72 kg·hm~(-2)·a~(-1),这为以后墨西哥柏人工林施肥管理提供数据参考。冗余分析结果可知,土壤TP、SOC、DOC与磷酸酶、脲酶、多酚氧化酶及过氧化氢酶呈显著正相关。(4)因子分析及冗余分析发现,DOC是驱动土壤酶活性的主要环境因子。研究结果可为评估氮沉降增加背景下我国亚热带地区人工林的土壤养分循环提供依据,为进一步预测未来氮输入情景下的区域养分平衡提供参考。
        We carried out an experiment to understand the effects of nitrogen deposition on soil C ∶ N ∶ P stoichiometry,extracellular enzyme activities associated with C,N and P cycles in a Cupressus lusitanica Mill. plantation in Nanjing,Jiangsu Province,China. There were six levels of nitrogen addition,including 0,24,48,72,96,and 120 kg·hm~(-2)·a~(-1),designated as N0,N1 N2,N3,N4,and N5 respectively. The results showed that:( 1) The concentration of soil organic carbon( SOC) was significantly elevated with increased N and peaked in N4 treatment.The concentration of soil dissolved organic carbon( DOC) was significantly higher in N2 and N3 treatments than that in the control. The soil total nitrogen( TN) concentration and N ∶ P ratio were significantly higher in N2 treatment than those in the control. No significant differences were found in other treatments. Soil C ∶ N and C ∶ P were significantly higher in N4 and N5 treatments than those in the control. Nitrogen addition had no significant effects on soil total phosphorus concentration( TP).( 2) Activities of soil urease,phosphatase( acid phosphatase,alkaline phosphatase,neutral phosphatase),polyphenol oxidase,cellulose,invertase,and catalase in lowand middle-level nitrogen treatments were higher than those in the control. In the high-level N addition treatment,activities of soil urease and cellulose showed a decreasing trend,whereas activities of phosphatase,lignin oxidase and invertase were significantly increased.( 3) Results from both cluster analysis and factor analysis showed that it was reliable to regard the level of 72kg·hm~(-2)·a~(-1)( N3) as the optimal rate for the C. lusitanica plantation. This result would provide a reference for fertilization in the C. lusitanica plantation. Results from redundancy analysis showed that concentrations of TP,SOC,and DOC were significantly positively correlated with the activities of soil phosphatase,urease,polyphenol oxidase,and catalase. The results showed that the variation in soil enzyme activities greatly accounted for concentrations of TP,SOC,and DOC.( 4) Factor analysis and redundancy analysis showed that dissolved organic carbon greatly accounted for the variation of soil enzyme activities. Our results provide a basis for assessing the effects of N deposition on soil nutrient cycling in the subtropical forests of China and a reference to accurately predicting regional soil nutrient balance under continued N deposition in the future.
引文
曾冬萍,蒋利玲,曾从盛,等.2013.生态化学计量学特征及其应用研究进展.生态学报,33(18):5484-5492.
    陈文年,卿东红,张轩波.2011.沱江流域人工针叶林演替系列的物种多样性.重庆高教研究,30(3):30-33.
    关松荫.1986.土壤酶及其研究法.北京:农业出版社.
    郭子武,陈双林,杨清平,等.2012.雷竹林土壤和叶片N、P化学计量特征对林地覆盖的响应.生态学报,32(20):6361-6368.
    洪丕征.2015.氮添加对南亚热带不同树种人工林幼龄林土壤温室气体排放和微生物群落结构的影响(博士学位论文).北京:中国林业科学研究院.
    李银,曾曙才,黄文娟.2011.模拟氮沉降对鼎湖山森林土壤酸性磷酸单酯酶活性和有效磷含量的影响.应用生态学报,22(3):631-636.
    刘星,汪金松,赵秀海.2015.模拟氮沉降对太岳山油松林土壤酶活性的影响.生态学报,35(14):4613-4624.
    刘奕琳,万福绪,娄晓瑞.2013.盐胁迫对10个墨西哥柏种源幼苗生理生化的影响.南京林业大学学报:自然科学版,37(4):29-33.
    吕金林,闫美杰,宋变兰,等.2017.黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征.生态学报,37(10):3385-3393.
    聂二旗,张心昱,郑国砥,等.2018.氮磷添加对杉木林土壤碳氮矿化速率及酶动力学特征的影响.生态学报,38(2):615-623.
    沈芳芳,袁颖红,樊后保,等.2012.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响.生态学报,32(2):517-527.
    涂利华,胡庭兴,张健,等.2012.模拟氮沉降对华西雨屏区光皮桦林土壤酶活性的影响.应用生态学报,23(8):2129-2134.
    王晶晶,樊伟,崔珺,等.2017.氮磷添加对亚热带常绿阔叶林土壤微生物群落特征的影响.生态学报,37(22):8361-8373.
    袁颖红,樊后保,刘文飞,等.2013.模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响.土壤,45(1):120-128.
    闫钟清,齐玉春,彭琴,等.2017.降水和氮沉降增加对草地土壤酶活性的影响.生态学报,37(9):3019-3027.
    张星星,杨柳明,陈忠,等.2018.中亚热带不同母质和森林类型土壤生态酶化学计量特征.生态学报,38(16):5828-5836.
    张博文,杨彦明,李金龙,等.2018.连续深松对黑土水热酶特性及细菌群落影响.生态学杂志,37(11):3323-3332.
    张艺,王春梅,许可,等.2017.模拟氮沉降对温带森林土壤酶活性的影响.生态学报,37(6):1956-1965.
    赵亚丽,于淑婷,穆心愿,等.2016.深耕加秸秆还田下施氮量对土壤碳氮比、玉米产量及氮效率的影响.河南农业科学,45(10):50-54.
    赵玉涛,李雪峰,韩士杰,等.2008.不同氮沉降水平下两种林型的主要土壤酶活性.应用生态学报,19(12):2769-2773.
    钟晓兰,李江涛,李小嘉,等.2015.模拟氮沉降增加条件下土壤团聚体对酶活性的影响.生态学报,35(5):1422-1433.
    周嘉聪,刘小飞,郑永,等.2017.氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响.生态学报,37(1):127-135.
    周晓兵,张元明,陶冶,等.2011.古尔班通古特沙漠土壤酶活性和微生物量氮对模拟氮沉降的响应.生态学报,31(12):3340-3349.
    Allison SD,Czimczik CI,Treseder KK.2008.Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest.Global Change Biology,14:1156-1168.
    Allison SD,Weintraub MN,Gartner TB,et al.2010.Evolutionary-Economic Principles as Regulators of Soil Enzyme Production and Ecosystem Function.Berlin:Springer:229-243.
    Agren GI,Bosatta E,Magill AH.2001.Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition.Oecologia,128:94-98.
    Burns RG,Deforest JL,Marxsen J,et al.2013.Soil enzymes in a changing environment:Current knowledge and future directions.Soil Biology and Biochemistry,58:216-234.
    Clark CM,Tilman D.2008.Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature,451:712-715.
    Chen J,Luo Y,Li J,et al.2017.Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition.Global Change Biology,23:1328-1337.
    Cameron KC,Di HJ,Moir JL.2013.Nitrogen losses from the soil/plant system:A review.Annals of Applied Biology,162:145-173.
    Compton JE,Watrud LS,Porteous LA,et al.2004.Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest.Forest Ecology and Management,196:143-158.
    Cusack DF,Firestone MK.2011.Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.Ecology,92:621-632.
    Dick RP.1994.Soil enzyme activities as indicators of soil quality.Soil Science Society of America Journal,58:107-124.
    Deforest JL,Zak DR,Pregitzer KS,et al.2004.Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest.Soil Biology and Biochemistry,36:965-971.
    Elser JJ,Fagan WF,Denno RF,et al.2000.Nutritional constraints in terrestrial and freshwater food webs.Nature,408:578-580.
    Elser JJ,Dobberfuhl DR,Mackay NA,et al.1996.Organism size,life history,and N∶P stoichiometry.Bioscience,46:674-684.
    Elser JJ,Acharya K,Kyle M,et al.2010.Growth rate-stoichiometry couplings in diverse biota.Ecology Letters,6:936-943.
    Flessa H,Ludwig B,Heil B,et al.2000.The origin of soil organic C,dissolved organic C and respiration in a long-term maize experiment in Halle,Germany,determined by13Cnatural abundance.Journal of Plant Nutrition and Soil Science,163:157-163.
    Güsewell S,Bollens U.2003.Composition of plant species mixtures grown at various N∶P ratios and levels of nutrient supply.Basic&Applied Ecology,4:453-466.
    Han W,Fang J,Guo D,et al.2005.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist,168:377-385.
    Hofmann K,Heuck C,Spohn M.2016.Phosphorus resorption by young beech trees and soil phosphatase activity as dependent on phosphorus availability.Oecologia,181:369-379.
    Haynes RJ.2000.Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand.Soil Biology and Biochemistry,32:211-219.
    Jian S,Li J,Chen J,et al.2016.Soil extracellular enzyme activities,soil carbon and nitrogen storage under nitrogen fertilization:A meta-analysis.Soil Biology and Biochemistry,101:32-43.
    Jing X,Yang X,Ren F,et al.2016.Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem.Applied Soil Ecology,107:205-213.
    Jia Y,Yu G,He N,et al.2014.Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity.Scientific Reports,4:3763.
    Koerselman W.1996.The vegetation N∶P ratio:A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology,33:1441-1450.
    Liu X,Zhang Y,Han W,et al.2013.Enhanced nitrogen deposition over China.Nature,494:459-462.
    LüY,Wang C,Wang F,et al.2013.Effects of nitrogen addition on litter decomposition,soil microbial biomass,and enzyme activities between leguminous and non-leguminous forests.Ecological Research,28:793-800.
    Nakaji T,Fukami M,Dokiya Y,et al.2001.Effects of high nitrogen load on growth,photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings.Trees,15:453-461.
    Pregitzer KS,Zak DR,Burton AJ,et al.2004.Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems.Biogeochemistry,68:179-197.
    Richter A,Burrows JP,NüH,et al.2005.Increase in tropospheric nitrogen dioxide over China observed from space.Nature,437:129-132.
    Sinsabaugh RL,Antibus RK,Linkins AE.1991.An enzymatic approach to the analysis of microbial activity during plant litter decomposition.Agriculture,Ecosystems&Environment,34:43-54.
    Sinsabaugh RL,Hill BH,Shah JJF.2009.Eco-enzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment.Nature,462:795-798.
    Sinsabaugh RL,Lauber CL,Weintraub MN,et al.2008.Stoichiometry of soil enzyme activity at global scale.Ecology Letters,11:1252-1264.
    Sinsabaugh RL.2010.Phenol oxidase,peroxidase and organic matter dynamics of soil.Soil Biology and Biochemistry,42:391-404.
    Sinsabaugh RL,Moorhead DL.1994.Resource allocation to extracellular enzyme production:A model for nitrogen and phosphorus control of litter decomposition.Soil Biology and Biochemistry,26:1305-1311.
    Schimel JP,Weintraub MN.2003.The implications of enzyme activity on microbial carbon and nitrogen limitation in soil:A theoretical model.Soil Biology and Biochemistry,35:549-563.
    Treseder KK,Vitousek PM.2001.Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests.Ecology,82:946-954.
    Wang QK,Wang SL,Liu YX.2008.Responses to N and P fertilization in a young Eucalyptus dunnii plantation:Microbial properties,enzyme activities and dissolved organic matter.Applied Soil Ecology,40:484-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700