磁场方向对圆筒结构内高温导电气体流动与传热特性的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Magnetic Field Direction on the Flow and Heat Transfer Characteristics of High Temperature Conductive Gas in Cylinder Structure
  • 作者:李程 ; 毛保全 ; 白向华 ; 李晓刚
  • 英文作者:LI Cheng;MAO Bao-quan;BAI Xiang-hua;LI Xiao-gang;Department of Arms and Control Engineering,Academy of Army Armored Force;
  • 关键词:武器身管 ; 火药气体 ; 磁场方向 ; 导电气体 ; 湍流动能 ; 磁流体 ; 传热特性
  • 英文关键词:weapon tube;;explosive gas;;magnetic field direction;;conductive gas;;turbulent kinetic energy;;magnetic fluid;;heat transfer characteristic
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:陆军装甲兵学院兵器与控制系;
  • 出版日期:2018-05-15
  • 出版单位:兵工学报
  • 年:2018
  • 期:v.39;No.254
  • 基金:国家重点基础研究项目(1501027)
  • 语种:中文;
  • 页:BIGO201805003
  • 页数:8
  • CN:05
  • ISSN:11-2176/TJ
  • 分类号:22-29
摘要
火药气体在高温环境下会发生电离形成热等离子体,从而具有良好的导电性。针对高温火药气体对武器身管产生热烧蚀的问题,提出一种应用磁控等离子体降低身管内膛表面温度的方法。运用磁流体描述法构建高温导电气体在圆筒结构中的湍流耗散模型,研究了不同磁场方向对导电气体黏性效应及腔体壁面温度的影响,并采用红外热成像技术测试了同轴磁场对导电气体传热特性的影响。结果表明:与流动方向相垂直的磁场,可以有效地降低导电气体的湍流动能和湍流黏度,削弱其传热能力,并且流动分布出现各向异性特征,沿磁场方向的湍流动能和湍流黏度要低于垂直磁场方向;施加同轴磁场可以限制带电粒子的径向扩散,减少导电气体对圆筒壁面的传热量,从而降低壁面温度。
        The propellant gas is ionized to form thermal plasma at high temperature,which has good conductivity. For the problem of thermal ablation of weapon barrel by high temperature propellant gas,a method to reduce the surface temperature of barrel bore by using magnetron plasma is presented. A turbulent dissipation model of high temperature conductive gas in cylinder structure is constructed by using the magnetic fluid description method. The influences of different magnetic field directions on the viscosity effect of conductive gas and the wall temperature of cavity are studied. The effect of coaxial magnetic field on the heat transfer characteristics of conductive gas is tested by infrared thermal imaging technology. The results show that magnetic field which is perpendicular to the direction of flow can effectively reduce the turbulent kinetic energy and turbulent viscosity of conductive gas and weaken its heat transfer capability,the flow distribution has the anisotropy characteristics,and the turbulent kinetic energy and turbulent vis-cosity along the magnetic field direction are lower than those in the direction perpendicular to the magnetic field. The coaxial magnetic field can limit the radial diffusion of charged particles and reduce the heat transfer of conductive gas to the wall of cylinder,thereby reducing the wall temperature.
引文
[1]李宏哲.火药能转化为大功率电磁能理论与关键技术研究[D].南京:南京理工大学,2008.LI Hong-zhe.Research on the key technologies for converting propellant energy into high power electromagnetic energy[D].Nanjing:Nanjing University of Science and Technology,2008.(in Chinese)
    [2]谢中元,周霖.燃烧型脉冲磁流体发电机实验研究[J].北京理工大学学报,2011,31(2):183-188.XIE Zhong-yuan,ZHOU Lin.Experimential study on propellant driven magnetohydrodynamic generator[J].Transactions of Beijing Institute of Technology,2011,31(2):183-188.(in Chinese)
    [3]周霖,廖英强,徐更光.爆轰产物导电性的实验测量[J].含能材料,2005,13(3):148-153.ZHOU Lin,LIAO Ying-qiang,XU Geng-guang.Experimental measurement of conductivity for the detonation product[J].Chinese Journal of Energetic Materials,2005,13(3):148-153.(in Chinese)
    [4]Burr U,Barleon L,Jochmann P,et al.Magnetohydrodynamic convection in a vertical slot with horizontal magnetic field[J].Journal of Fluid Mech,2003,475(1):21-40.
    [5]李开,刘伟强.高超声速飞行器磁控热防护系统建模分析[J].物理学报,2016,65(6):216-224.LI Kai,LIU Wei-qiang.Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J].Acta Physica Sinica,2016,65(6):216-224.(in Chinese)
    [6]Dietiker J F,Hoffmann K.Computations of turbulent magnetohydrodynamic flows[C]∥33rd Plasmadynamics and Lasers Conference.Maui,Hawaii,US:AIAA,2002.
    [7]张炎,黄护林.磁控等离子体对圆管内流动和传热的影响[J].南京航空航天大学学报,2008,40(2):163-168.ZHANG Yan,HUANG Hu-lin.Influence of magnetically controlled plasma on the flow and heat transfer in a circular tube[J].Journal of Nanjing University of Aeronautics&Astronautics,2008,40(2):163-168.(in Chinese)
    [8]郑小梅,杨兴宇.三维磁流体强化超燃冲压发动机数值模拟[J].航空动力学报,2012,27(10):2390-2400.ZHENG Xiao-mei,YANG Xing-yu.Simulation of three-dimensional magnetohydrodynamic enhanced scramjet[J].Journal of Aerospace Power,2012,27(10):2390-2400.(in Chinese)
    [9]张小兵.枪炮内弹道学[M].北京:北京理工大学出版社,2014.ZHANG Xiao-bing.Interior ballistics of guns[M].Beijing:Beijing Institude of Technology Press,2014.(in Chinese)
    [10]曾志银,马明迪,宁变芳.火炮身管阳线损伤机理分析[J].兵工学报,2014,35(11):1736-1742.ZENG Zhi-ying,MA Ming-di,NING Bian-fang.Analysis of rifling land damage mechanism of gun barrel[J].Acta Armamentarii,2014,35(11):1736-1742.(in Chinese)
    [11]范宝春,董刚,张辉.湍流控制原理[M].北京:国防工业出版社,2011.FAN Bao-chun,DONG Gang,ZHANG Hui.Turbulence control principle[M].Beijing:National Defense Industry Press,2011.(in Chinese)
    [12]Bisek N J,Gosse R,Poggie J.Computational study of impregnated ablator for improved magnetohydrodynamic heat shield[J].Journal of Spacecraft Rockets,2013,50(5):927-935.
    [13]侯俊,毛杰,潘华辰.磁流体管流的层流与湍流模型数值模拟[J].核聚变与等离子体物理,2013,33(1):7-13.HOU Jun,MAO Jie,PANG Hua-chen.Numerical simulation of laminar and turbulent flow model of magnetic fluid pipe[J].Nuclear Fusion and Plasma Physics,2013,33(1):7-13.(in Chinese)
    [14]Kenjers S,Hanjalic K.A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows[J].Physics of Fluids,2004,16(5):1229-1241.
    [15]张康平,田正雨,冯定华.三维磁流体动力学管道流动加减速控制数值研究[J].空气动力学报,2009,27(4):474-479.ZHANG Kang-ping,TIAN Zheng-yu,FENG Ding-hua.Numerical study of acceleration/deceleration control of three-dimensional magnetohydrodynamic flow in channel[J].Acta Aerodynamica Sinica,2009,27(4):474-479.(in Chinese)
    [16]Bityurin V A,Bocharov A N.Study of catalytic effects at reentry vehicle-MHD heat flux mitigation in irradiative hypersonic flow around a blunt body with ablating carbon surface,AIAA-2014-1033[R].Reston,US:AIAA,2014.
    [17]郑春开.等离子体物理[M].北京:北京大学出版社,2009.ZHENG Chun-kai.Plasma physics[M].Beijing:Peking University Press,2009.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700