DOM对米槠次生林不同土层土壤微生物呼吸及其熵值的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of dissolved organic matter addition on soil microbial respiration and quotient values in a secondary Castanopsis carlesii forest
  • 作者:吴东梅 ; 郭剑芬 ; 张政 ; 李帅军 ; 杨玉盛
  • 英文作者:WU Dongmei;GUO Jianfen;ZHANG Zheng;LI Shuaijun;YANG Yusheng;School of Geographical Science Fujian Normal University;Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology;
  • 关键词:土壤微生物呼吸 ; 微生物生物量碳 ; 土壤代谢熵 ; 微生物熵
  • 英文关键词:soil microbial respiration;;microbial biomass carbon;;soil metabolic quotient;;microbial quotient
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学地理科学学院;湿润亚热带山地生态国家重点实验室培育基地;
  • 出版日期:2018-03-02 08:41
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划项目(2016YFD0600304);; 国家自然科学基金项目(31370615);; 福建省自然科学基金项目(2015J01121)
  • 语种:中文;
  • 页:STXB201811008
  • 页数:10
  • CN:11
  • ISSN:11-2031/Q
  • 分类号:83-92
摘要
可溶性有机质(Dissolved organic matter,DOM)作为土壤可溶性有机碳的重要来源,进入土壤之后通过改变土壤微生物数量和活性影响土壤矿化。DOM输入对土壤微生物呼吸和熵值的研究多集中在表层土壤,但对深层土壤微生物呼吸和熵值的影响关注较少。通过室内培养实验(120 d)研究米槠(Castanopsis carlesii)鲜叶DOM添加对表层土壤(0—10 cm)和深层土壤(40—60 cm)微生物呼吸及其土壤代谢熵和微生物熵的影响,为揭示DOM输入对亚热带森林土壤碳过程的影响提供理论依据。结果表明,在培养第1天,添加DOM的表层和深层土壤CO_2瞬时排放速率均显著高于对照(P<0.001),分别是对照(不添加DOM)的3.58倍和6.93倍,之后显著下降。就累积排放量而言,无论是DOM添加处理还是对照,表层土壤显著大于深层土壤;在米槠鲜叶DOM添加后,表层土壤累积排放量显著大于对照的表层土壤(P<0.001),但DOM添加处理深层土壤累积排放量与对照的深层土壤无明显差异。就微生物生物量碳而言,表层土壤微生物生物量碳含量在培养期间显著大于深层土壤。在整个添加DOM培养期间,表层土壤微生物生物量碳含量显著大于表层对照土壤,深层土壤微生物生物量碳含量显著大于深层对照土壤(第3天除外)。培养结束时(120 d),米槠鲜叶DOM添加处理下,表层土壤和深层土壤有机碳含量与第3天相比分别减少26%和19%。米槠鲜叶DOM添加处理后的深层土壤代谢熵(qCO_2)显著低于对照的深层土壤和DOM添加处理的表层土壤qCO_2(P<0.001),说明外源DOM进入深层土壤后提高了土壤微生物对碳的利用效率。米槠鲜叶DOM添加处理后的深层土壤微生物熵是培养第3天的1.58倍,显著大于培养初期(P<0.05),而DOM添加处理的表层土壤、对照的表层土壤与深层土壤的微生物熵分别是培养第3天的68%、79%和21%,说明DOM添加提高了深层土壤质量。
        Dissolved organic matter( DOM) as an important source of soil dissolved organic carbon,it affects soil mineralization through changes of soil microbial quantity and activity. However,many reports about the DOM impact on soil microbial respiration and quotient focused on surface soil,its effect on deep soil is less paid attention. A 120-day incubation experiment was done to reveal the effects of DOM from Castanopsis carlesii fresh leaf on soil microbial respiration and quotient values of surface soil( 0—10 cm) and deep soil( 40—60 cm) in a secondary Castanopsis carlesii forest. It willprovide some knowledge about the role of DOM input on soil C process in subtropical forests. The results showed that on the first day,instantaneous CO_2 emission rates of surface and deep soils after DOM addition were significantly higher than those in control treatments( P< 0.001),being 3.58 and 6.93 times of the control,respectively,but after that CO_2 emission rates reduced significantly. In DOM added treatment or control,the cumulative CO_2 emission in surface soil was significantly greater than that in the deep soil. After adding DOM,the cumulative CO_2 emissions from surface soil was significantly higher than from the control( P<0.001). However,no obvious difference for the cumulative CO_2 emission from deep soil between DOM addition and control treatments was found. Microbial biomass C( MBC) content of surface soil during the incubation period was significantly greater than that in deep soil. The MBC content in surface soil under DOM addition treatment was higher than that in control treatment during the incubation period. The same trend was for the deep soil except for the third day. Under DOM addition treatment,soil organic C contents in surface and deep soils on the 120 th day were 26% and 19%less than those on the third day,respectively. At the end of incubation,the soil metabolic quotient( qCO_2) in DOM added deep soil was significantly lower than those in deep soil of the control and DOM added surface soil( P<0.001),indicating the increase of carbon use efficiency after DOM addition into deep soil. After incubation for 120 days,microbial quotient of DOM added deep soil was 1.58 times than that of the initial period( the 3 rd day). In contrast,soil microbial quotients of surface soil under DOM added treatment and surface and deep soils of control treatment were 68%,79% and 21% on the3 rd day,respectively. This showed that DOM addition was beneficial for the improvement of the quality of deep soil.
引文
[1]Jobbágy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications,2000,10(2):423-436.
    [2]Fontaine S,Barot S,BarréP,Bdioui N,Mary B,Rumpel C.Stability of organic carbon in deep soil layers controlled by fresh carbon supply.Nature,2007,450(7167):277-280.
    [3]Rustad L E,Huntington T G,Boone R D.Controls on soil respiration:implications for climate change.Biogeochemistry,2000,48(1):1-6.
    [4]Davidson E A,Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.Nature,2006,440(7081):165-173.
    [5]Kirschbaum M U F.Soil respiration under prolonged soil warming:are rate reductions caused by acclimation or substrate loss?Global Change Biology,2004,10(11):1870-1877.
    [6]Fierer N,Craine J M,Mclauchlan K,Schimel J P.Litter quality and the temperature sensitivity of decomposition.Ecology,2005,86(2):320-326.
    [7]Hartley I P,Ineson P.Substrate quality and the temperature sensitivity of soil organic matter decomposition.Soil Biology and Biochemistry,2008,40(7):1567-1574.
    [8]Wang Q K,Wang Y P,Wang S L,He T X,Liu L.Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers.Soil Biology and Biochemistry,2014,72:145-151.
    [9]LüM K,Xie J S,Wang C,Guo J F,Wang M H,Liu X F,Chen Y,Chen G S,Yang Y S.Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China.Biology and Fertility of Soils,2015,51(7):857-867.
    [10]Bengtson P,Barker J,Grayston S J.Evidence of a strong coupling between root exudation,C and N availability,and stimulated SOM decomposition caused by rhizosphere priming effects.Ecology and Evolution,2012,2(8):1843-1852.
    [11]Uselman S M,Qualls R G,Lilienfein J.Quality of soluble organic C,N,and P produced by different types and species of litter:root litter versus leaf litter.Soil Biology and Biochemistry,2012,54(6):57-67.
    [12]Fontaine S,Bardoux G,Abbadie L,Mariotti A.Carbon input to soil may decrease soil carbon content.Ecology Letters,2004,7(4):314-320.
    [13]Garcia-Pausas J,Paterson E.Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon.Soil Biology and Biochemistry,2011,43(8):1705-1713.
    [14]Zhang W D,Wang S L.Effects of NH+4and NO-3on litter and soil organic carbon decomposition in a Chinese fir plantation forest in South China.Soil Biology and Biochemistry,2012,47(2):116-122.
    [15]Wang Q K,Liu S P,Wang S L.Debris manipulation alters soil CO2efflux in a subtropical plantation forest.Geoderma,2013,192(192):316-322.
    [16]Wang Q K,He T X,Wang S L,Liu L.Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest.Agricultural and Forest Meteorology,2013,s178-179(17):152-160.
    [17]Toosi E R,Doane T A,Horwath W R.Abiotic solubilization of soil organic matter,a less-seen aspect of dissolved organic matter production.Soil Biology and Biochemistry,2012,50(5):12-21.
    [18]Wang H,Xu W H,Hu G Q,Dai W W,Jiang P,Bai E.The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest.Oecologia,2015,178(4):1239-1250.
    [19]万菁娟,郭剑芬,纪淑蓉,任卫岭,杨玉盛.可溶性有机物输入对亚热带森林土壤CO2排放及微生物群落的影响.林业科学,2016,52(2):106-113.
    [20]李延茂,胡江春,汪思龙,王书锦.森林生态系统中土壤微生物的作用与应用.应用生态学报,2004,15(10):1943-1946.
    [21]Manzoni S,Taylor P,Richter A,Porporato A,gren G I.Environmental and stoichiometric controls on microbial carbon-use efficiency in soils.New Phytologist,2012,196(1):79-91.
    [22]Six J,Frey S D,Thiet R K,Batten K M.Bacterial and fungal contributions to carbon sequestration in agroecosystems.Soil Science Society of America Journal,2006,70(2):555-569.
    [23]Fanin N,H?ttenschwiler S,Fromin N.Litter fingerprint on microbial biomass,activity,and community structure in the underlying soil.Plant and Soil,2014,379(1/2):79-91.
    [24]Yang K,Zhu J J.Impact of tree litter decomposition on soil biochemical properties obtained from a temperate secondary forest in Northeast China.Journal of Soils and Sediments,2015,15(1):13-23.
    [25]Taylor J P,Wilson B,Mills M S,Burns R G.Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques.Soil Biology and Biochemistry,2002,34(3):387-401.
    [26]Fang C M,Moncrieff J B.The variation of soil microbial respiration with depth in relation to soil carbon composition.Plant and Soil,2005,268(1):243-253.
    [27]Holden P A,Fierer N.Microbial processes in the vadose zone.Vadose Zone Journal,2005,4(1):1-21.
    [28]Chang Y P,Bu X P,Niu W B,Xiu Y,Wang H F.Microbial community structure and diversity in the soil spatial profile of 5-year-old Robinia pseudoacacia'Idaho,'determined by 454 sequencing of the 16S RNA gene.The Journal of General and Applied Microbiology,2013,59(6):451-461.
    [29]Li C H,Yan K,Tang L S,Jia Z J,Li Y.Change in deep soil microbial communities due to long-term fertilization.Soil Biology and Biochemistry,2014,75:264-272.
    [30]刘珊珊,王芬,张兴华,宫渊波,王燕,尹艳杰,李渊,马金松,郭挺.放牧干扰对岷江上游山地森林—干旱河谷交错带土壤微生物量及呼吸熵的影响.水土保持通报,2014,34(2):63-68.
    [31]Yang Y S,Guo J F,Chen G S,Yin Y F,Gao R,Lin C F.Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China.Plant and Soil,2009,323(1/2):153-162.
    [32]刘强.中亚热带不同更新方式森林凋落物数量及养分动态[D].福州:福建师范大学,2012.
    [33]Wieder W R,Cleveland C C,Townsend A R.Tropical tree species composition affects the oxidation of dissolved organic matter from litter.Biogeochemistry,2008,88(2):127-138.
    [34]Leff J W,Nemergut D R,Grandy A S,O'Neill S,Wickings K,Townsend A R,Cleveland C C.The Effects of soil bacterial community structure on decomposition in a tropical rain forest.Ecosystems,2012,15(2):284-298.
    [35]Muhammad W,Vaughan S M,Dalal R C,Menzies N W.Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a vertisol.Biology and Fertility of Soils,2011,47(1):15-23.
    [36]王晓峰,汪思龙,张伟东.杉木凋落物对土壤有机碳分解及微生物生物量碳的影响.应用生态学报,2013,24(9):2393-2398.
    [37]Cleveland C C,Nemergut D R,Schmidt S K,Townsend A R.Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition.Biogeochemistry,2007,82(3):229-240.
    [38]Kaiser K,Kalbitz K.Cycling downwards-dissolved organic matter in soils.Soil Biology and Biochemistry,2012,52(8):29-32.
    [39]张浩,吕茂奎,江军,蒲晓婷,王恩熙,邱曦,谢锦升.侵蚀红壤区植被恢复对表层与深层土壤有机碳矿化的影响.水土保持学报,2016,30(1):244-249,314-314.
    [40]Mu?oz C,Monreal C M,Schnitzer M,Zagal E.Influence of Acacia caven(Mol)coverage on carbon distribution and its chemical composition in soil organic carbon fractions in a Mediterranean-type climate region.Geoderma,2008,144(1/2):352-360.
    [41]立天宇,康峰峰,韩海荣,高晶,宋小帅,于舒,赵金龙,于晓文.冀北辽河源自然保护区土壤微生物碳代谢对阔叶林叶凋落物组成的响应.应用生态学报,2015,26(3):715-722.
    [42]Moscatelli M C,Lagomarsino A,Marinari S,De Angelis P,Grego S.Soil microbial indices as bioindicators of environmental changes in a poplar plantation.Ecological Indicators,2005,5(3):171-179.
    [43]Rumpel C,K9gel-Knabner I.Deep soil organic matter——a key but poorly understood component of terrestrial C cycle.Plant and Soil,2011,338(1/2):143-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700