利用气液协调控制的车辆稳定性控制系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development of vehicle stability control system with the coordinated control of active aerodynamic system and hydraulic brake system
  • 作者:吴乙万 ; 杨康 ; 陈正强 ; 李凡
  • 英文作者:WU Yiwan;YANG Kang;CHEN Zhengqiang;LI Fan;School of Mechanical Engineering and Automation,Fuzhou University;State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University;
  • 关键词:车辆稳定性 ; 主动气动控制 ; 差动制动 ; 控制策略
  • 英文关键词:vehicle stability;;active aerodynamic control;;differential braking control;;control strategy
  • 中文刊名:FZDZ
  • 英文刊名:Journal of Fuzhou University(Natural Science Edition)
  • 机构:福州大学机械工程及自动化学院;湖南大学汽车车身先进设计制造国家重点实验室;
  • 出版日期:2018-06-07 13:41
  • 出版单位:福州大学学报(自然科学版)
  • 年:2018
  • 期:v.46;No.225
  • 基金:福建省自然科学基金资助项目(2015J01196);; 福州大学科研启动基金资助项目(XRC-1430,2014-XQ-17)
  • 语种:中文;
  • 页:FZDZ201805012
  • 页数:7
  • CN:05
  • ISSN:35-1117/N
  • 分类号:73-79
摘要
针对高速工况下轮胎易饱和并导致车辆失稳的问题,提出基于主动气动控制与液压差动制动控制相协调的车辆稳定性控制方法.在车辆顶部安装一对主动风翼板并分析其气动特性,通过独立控制两风翼板的攻角以主动控制车辆所受的气动力/力矩.控制器采用分层控制架构,顶层根据车辆运动状态和道路附着情况计算期望横摆角速度,中层采用模糊控制算法实时计算实现车辆稳定性控制所需的辅助横摆力矩,底层则协调主动气动控制和差动制动控制产生辅助横摆力矩.在Casim/Simulink联合仿真平台上对所提方法进行仿真验证,结果表明,该方法能使车辆的动力学响应较好地跟踪期望值,且能降低轮胎工作负荷,达到避免车辆失稳的目的.
        Under critical condition,tyres are easily saturated and might cause the unstability of the vehicle. A new control method for vehicle stability control was presented,which was applied additional yaw moment to intervene the state of the vehicle by means of active aerodynamic control and differential braking control. Two airfoils are properly placed on the roof of the vehicle,and those angle of attack can be modulated separately. The aerodynamics of the vehicle were analyzed by CFD method. The control architecture for the stability system is hierarchical. In the upper layer,the desired yaw rate was calculated with the consideration of vehicle dynamics and tyre adhesive limit. In the middle layer,a fuzzy controller was designed to determine the additional yaw moment in real time. In the lower layer,a new control stratage was proposed to coordinate active aerodynamic control and differential braking control. The proposed method was evaluated via Carsim/Simulink. The results show that the proposed method can make the vehicle yaw response track the desired value,and can effectively reduce the tyre work load.
引文
[1]张宝珍,谢晖,黄晶,等.基于独立脉冲转向系统车辆稳定性控制[J].湖南大学学报(自然科学版),2017,44(10):25-32.
    [2]周兵,田晨,宋义彤,等.基于路面附着系数估计的AFS控制策略研究[J].湖南大学学报(自然科学版),2017,44(4):16-22.
    [3]吴乙万,黄智,刘李盼.基于差动制动的车道偏离辅助控制[J].中国机械工程,2013,24(21):2977-2981.
    [4]HUANG Z,WU Y W.Lane departure assistance based on balanced longitudinal slip ratio differential braking control[J].International Journal of Vehicle Safety,2015,8(3):205-217.
    [5]杨慎,欧健,杨鄂川,等.基于转矩优化分配的电动汽车横摆稳定性研究[J].中国机械工程2017,28(14):1664-1668.
    [6]ZHANG X D,GHLICH D.Integrated traction control strategy for distributed drive electric vehicles with improvement of economy and longitudinal driving stability[J].Energies,2017,10(1):126-143.
    [7]SAVKOOR A,CHOU C.Application of aerodynamic actuators to improve vehicle handling[J].Vehicle System Dynamics,1999,32(4/5):345-374.
    [8]SAVKOOR A,MANDERS S,RIVA P.Design of actively controlled aerodynamic devices for reducing pitch and heave of truck cabins[J].JSAE Review,2001,22(4):421-434.
    [9]MEIJAARD J,SAVKOOR A,LODEWIJKS G.Potential for vehicle ride improvement using both suspension and aerodynamic actuators[C]//Proceedings of the IEEE International Symposium on Industrial Electronics.Dubrovnik:IEEE,2005:385-390.
    [10]CORNO M,BOTTELLI S,PANZANI G,et al.Performance assessment of active aerodynamic surfaces for comfort and handling optimization in sport cars[J].IEEE Transactions on Control Systems Technology,2015,24(1):189-199.
    [11]CORNO M,BOTTELLI S,TANELLI M,et al.Active control of aerodynamic surfaces for ride control in sport vehicles[J].IFAC Proceedings Volumes,2014,47(3):7553-7558.
    [12]SHIBUE H,OGAWA A,MASHIO S.Method of vehicle dynamics analysis by means of equivalent cornering stiffness for aerodynamic forces and moments[J].Transactions of Tianjin University,2012,5(2):737-744.
    [13]陆文昌,王梓,陈龙,等.可调式扰流板对高速制动效能的影响[J].制造业自动化,2014,36(5):59-63.
    [14]MEDER J,WIEGAND T,PFADENHAUER M.Adaptive aerodynamics of the new Porsche 911 turbo[J].ATZ Worldwide,2014,116(2):42-45.
    [15]杨易,刘政,谷正气,等.MIRA阶梯背模型尾部非光滑表面优化设计方法[J].重庆大学学报,2015,38(4):10-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700