泥沙补给突变下的山洪灾害研究构想和成果展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Framework and Anticipated Results of Flash Flood Disasters Under the Mutation of Sediment Supply
  • 作者:王协康 ; 刘兴年 ; 周家文
  • 英文作者:WANG Xiekang;LIU Xingnian;ZHOU Jiawen;State key Lab.of Hydraulics and Mountain River Eng.,Sichuan Univ.;
  • 关键词:山区流域 ; 暴雨洪水 ; 泥沙补给 ; 山洪灾害 ; 成灾机理
  • 英文关键词:mountainous area;;storm flood;;sediment supply;;flash flood disaster;;disaster mechanism
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:四川大学水力学与山区河流开发保护国家重点实验室;
  • 出版日期:2019-06-18 09:21
  • 出版单位:工程科学与技术
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金重点项目(51639007);; 国家重点研发计划课题(2017YFC1502504)
  • 语种:中文;
  • 页:SCLH201904001
  • 页数:10
  • CN:04
  • ISSN:51-1773/TB
  • 分类号:5-14
摘要
全球山地面积占陆地面积的30%,每年有超过5 000人死于山洪灾害。中国山洪灾害防治区面积占陆地面积的48%,居住人口占全国人口的44.2%。2000年以来,中国每年约1 000人因山洪灾害死亡,山洪灾害死亡人数占洪涝灾害死亡人数的70%左右。山地区域地形险峻,地表破碎,表层风化层厚,局地暴雨频发,洪水陡涨猛落,沟床冲淤调整剧烈,山洪水沙运动耦合致灾突出。山洪灾害防治已成为中国工农业、能源、交通、国防安全等国家重大工程基础建设、区域社会经济发展和人民生命财产安全面临的突出难题,暴雨山洪灾害研究仍是中国当前防洪减灾工作的重点和难点。面对严峻的山洪水沙灾害风险形势,传统忽略泥沙运动影响的防灾理论与技术难以解决山洪水沙耦合致灾问题,无法满足目前重大山洪水沙灾害防治的实际需求,突出表现为泥沙补给突变对重大山洪灾害的成灾效应认识不够、山洪水沙运动耦合成灾区识别不清、山洪水沙灾害防治技术针对性不强、山洪水沙运动防灾减灾的区域联动性考虑不全等。因此,急需通过系统梳理暴雨山洪水沙运动规律,实现山洪水沙耦合成灾理论创新,提出重大山洪水沙灾害的源头治理和区域全面防范的有效措施,显著提高中国山洪水沙灾害防治技术水平,为保障国家重大工程安全和人民生命财产安全提供理论基础和技术支撑。长期以来的暴雨山洪灾害预报预警理论及防治技术研究多以降雨–径流–水位分析为主,以临界降雨/水位阈值条件为判据,较少涉及泥沙补给突变引发的沟床剧烈调整致灾机制,而大量的暴雨山洪灾害现场表明泥沙补给与洪水的耦合作用是重大山洪灾害的关键源动力。"泥沙补给突变下的山洪灾害研究"项目以山区暴雨山洪灾害现场调查与灾害试验反演模拟为基础,采用水文学、土力学、水力学及河流动力学等理论方法和水沙运动数值模拟技术,突出研究山区小流域暴雨洪水、坡地破坏产沙、宽级配卵砾石输沙以及沟床来沙超量补给的水沙运动耦合致灾过程。通过系统研究山地区域暴雨洪水及其产沙特征、复杂沟床输沙动力,以及超量泥沙补给下的水沙运动及其沟床响应规律,以揭示山地区域暴雨山洪过程与泥沙补给突变的沟床响应致灾机理,为山地区域山洪灾害预警及灾害防治提供依据,并及时丰富和完善暴雨山洪灾害所涉及的水沙运动规律与沟床响应致灾防治技术。
        The mountain area accounts for 30% of the land area globally, with more than 5 000 people dying each year from flash floods. China's flash flood disaster control zone covers 48% of the land area, with the living population accounting for 44.2% of the country's population. Since 2 000,about 1 000 people in China have died each year as a result of flash floods, and the number of deaths from flash floods accounts for about 70% of the death toll from flood disasters. A mountain area often shows the characteristics of steep terrain, broken surface, thick soil layer and frequent rainstorm, and thus, the mountain flood and sediment movement coupling causes the disaster to be prominent because of the steep rise and fall of the flood and the dramatic changes of riverbeds. The prevention and control of flash flood disaster has become a prominent problem to China's major infrastructure constructions such as agriculture, energy, transportation and national defense security, regional social and economic development and the safety of people's lives and property. The study of rainstorm and flash flood disaster is still the focus of flood control and disaster reduction in China. Facing the severe disaster risk situation of flood and sediment transport, it is difficult to solve the problem of disaster prevention using the traditional theory and technology of sediment movement, which do not consider the actual coupling process of flood and sediment. In fact, there is not enough understanding of the catastrophic effect of sediment supply mutation on major flash flood disaster. Nowadays, the mechanism between flood and sediment transport coupled into the disaster area identification is unclear, and the prevention and control technology of flood and sediment disaster is not perfect in mountain area. Therefore, it is urgent to systematically sort out the law of flood and sediment transport in rainstorm mountain, by realizing the theoretical innovation of the coupling disaster of flood and sediment movement, putting forward the effective measures of source control and regional comprehensive prevention of major flood and sediment disasters, and significantly improving the technical level of flood and sediment disaster prevention and control in China. It will provide theoretical basis and technical support for safeguarding the safety of major projects in the country and the safety of people's lives and property. The research on early warning theory and prevention and control technology of rainstorm and flash flood disaster has been studied mainly by rainfall–runoff–water level analysis, taking the critical rainfall/water level threshold condition as the criterion, and less involving the severe adjustment mechanism of riverbed caused by the mutation of sediment supply. But a large number of rainstorm flash flood disaster scene shows that the coupling between sediment supply and flood is the key source power of major flash flood disaster. The project "Research on flash flood disaster under the mutation of sediment supply"is based on the field investigation of rainstorm and flood disaster in mountainous areas and the inversion simulation of disaster experiment.Through the theoretical analysis of hydrology, soil mechanics, hydraulics and river dynamics, in combined with the numerical simulation, the applicants will investigate the coupling disaster process of storm flood in typical small watersheds, sediment from landslide, gravel and pebble transport with a large range of size distribution and the excess sediment supply in a gully. The characteristics of storm flood and sediment in mountain regions, the complex transport power of the riverbed, the water and sediment motion and channel response patterns with excessive sediment supply will be systematically investigated. The response disaster mechanism of rainstorm flood process in the mountain region and the mutation of sediment supply will be clarified. The forgoing researches will provide theoretical and technical support for the early warning and prevention of flood disaster in the mountain region, and will enrich and perfect the hydrological sediment motion and the disaster prevention method during the flood disaster.
引文
[1]Li Zhongping,Bi Hongwei,Zhang Mingbo.Studies on precipitation distribution in mountain flood-prone areas in China[J].China Water Resources,2007(14):25-27.[李中平,毕宏伟,张明波.我国山洪灾害高易发降雨区分布研究[J].中国水利,2007(14):25-27.]
    [2]Ma Meihong,He bingshun,Guo Liang,et al.The characteristics and problem of flash flood on 2012 in China[J].China Flood&Drought Management,2014,24(2):15-18.[马美红,何秉顺,郭良,等.2012年我国山洪灾害特点及问题[J].中国防汛抗旱,2014,24(2):15-18.]
    [3]中华人民共和国国民经济和社会发展第十二个五年规划纲要[R].http://www.gov.cn/2011lh/content_1825838-7.htm,49-50.
    [4]中华人民共和国国民经济和社会发展第十三个五年规划纲要[R].http://wcwy.ahxf.gov.cn/village/s4newContent.asp?webid=5264&ClassID=76115&id2066705.
    [5]Huschke R E.Glossary of meteorology[M].Boston:American Meteorological Society,2000.
    [6]Borga M,Boscolo P,Zanon F,et al.Hydrometeorological analysis of the 29 August 2003 flash flood in the eastern Italian Alps[J].Journal of Hydrometeorology,2007,8(5):1049-1067.
    [7]Gao Yanchao,He Jie,Chen Ningsheng,et al.Analysis of characters of torrent disasters in the wowns of the mountain areas,Sichuan,China[J].Journal of Chengdu University of Technology(Science&Technology Edition),2006,33(1):84-89.[高延超,何杰,陈宁生,等.四川省山区城镇山洪灾害特征分析[J].成都理工大学学报(自然科学版),2006,33(1):84-89.]
    [8]Ding Hairong,Li Yong,Zhao Guohua,et al.Analysis of flash flood formation character and cause in the upper reaches ofMinjiang river after Wenchuan earthquake[J].Journal of Catastrophology,2013,28(2):14-19.[丁海容,李勇,赵国华,等.汶川地震后岷江上游山洪发育特征与成因分析[J].灾害学,2013,28(2):14-19.]
    [9]Barredo J I.Major flood disasters in Europe:1950-2005[J].Natural Hazards,2007,42(1):125-148.
    [10]Cao Shuyou,Liu Xingnian,Huang Er,et al.Mechanism and assessment factors for flash floods induced by earthquakes[J].Journal of Southwest University(Natural Science Edition),2008,34(6):1077-1082.[曹叔尤,刘兴年,黄尔,等.地震诱发山洪形成机理与评估指标初探[J].西南民族大学学报(自然科学版),2008,34(6):1077-1082.]
    [11]Du Jun,Ding Wenfeng,Ren Hongyu.Relationships between different types of flash flood disasters and their main impact factors in the Sichuan Province[J].Resources and Environment in the Yangtze Basin,2015,24(11):1977-1983.[杜俊,丁文峰,任洪玉.四川省不同类型山洪灾害与主要影响因素的关系[J].长江流域资源与环境,2015,24(11):1977-1983.]
    [12]Brauer C C,Teuling A J,Overeem A,et al.Soil buffer limits flash flood response to extraordinary rainfall in a Dutch lowland catchment[J].Hydrology&Earth System Sciences Discussions,2011,8(1):111-150.
    [13]Jiang Jinhong,Shao Liping.Standard of mountain flood warning based on the precipitation observation data[J].Journal of Hydraulic Engineering,2010,41(4):458-463.[江锦红,邵利萍.基于降雨观测资料的山洪预警标准[J].水利学报,2010,41(4):458-463.]
    [14]Kundzewica Z W,Kanae S,Seneviratne S I,et al.Flood risk and climate change:Global and regional perspectives[J].International Association of Scientific Hydrology Bulletin,2014,59(1):1-28.
    [15]Whitfield P H,Pomeroy J W.Changes to flood peaks of a mountain river:Implications for analysis of the 2013 flood in the upper bow river,Canada[J].Hydrological Processes,2016,30(25):4657-4673.
    [16]Pan Jiajia,Cao Zhixian,Wang Xiekang,et al.Comparative study of simplified and full hydrodynamic models for flash floods[J].Journal of Sichuan University(Engineering Science Edition),2012,44(Supp1):77-82.[潘佳佳,曹志先,王协康,等.暴雨山洪水动力学模型及其简化模型的比较研究[J].四川大学学报(工程科学版),2012,44(增刊1):77-82.]
    [17]Radice A,Longoni L,Papini M,et al.Generation of a design flood-event scenario for a mountain river with intense sediment transport[J].Water,2016,8(12):597.
    [18]Apel H,Thieken A H,Merz B,et al.A probabilistic modelling system for assessing flood risks[J].Natural Hazards,2006,38(1/2):79-100.
    [19]Neuhold C,Stanzel P,Nachtebel H P.Incorporating river morphological changes to flood risk assessment:Uncertainties,methodology and application[J].Natural Hazards and Earth System Science,2009,9(3):789-799.
    [20]Marchi L,Borga M,Preciso E,et al.Characterisation of selected extreme flash floods in Europe and implications for flood risk management[J].Journal of Hydrology,2010,394(1/2):118-133.
    [21]Lin G W,Chen H,Hovius N,et al.Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment[J].Earth Surface Processes&Landforms,2008,33(9):1354-1373.
    [22]Izmailow B,Kamykowska M,Krzemien K.The geomorphological effects of flash floods in mountain river channels[J].The Case of the River Wilsznia(Western Carpathian Mountains),2006,116:89-97.
    [23]Koi T,Hotta N,Ishigaki I,et al.Prolonged impact of earthquake-induced landslides on sediment yield in a mountainwatershed:The Tanzawa region,Japan[J].Geomorphology,2008,101(4):692-702.
    [24]Ddadson S J,Hovius N,Chen H,et al.Earthquake-triggered increase in sediment delivery from an active mountain belt[J].Geology,2004,32(8):733.
    [25]Cui P,Chen X Q,Zhu Y Y,et al.The Wenchuan Earthquake(May 12,2008),Sichuan Province,China,and resulting geohazards[J].Natural Hazards,2009,56(1):19-36.
    [26]Wang J,Jin Z,Hilton R G,et al.Controls on fluvial evacuation of sediment from earthquake-triggered landslides[J].Geology,2015,43(2):115-118.
    [27]Parker R N,Densmore A L,Rosser N J,et al.Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth[J].Nature Geoscience,2011,4(7):449-452.
    [28]Ding Hairong,Li Yong,Yan Liang,et al.Influences of disaster chain driven by Wenchuan earthquake on sediment discharge in upper reaches of Minjiang river,Sichuan,China[J].Journal of Chengdu Univeristy of Technology(Science&Technology Edition),2013,40(6):712-720.[丁海容,李勇,闫亮,等.汶川地震驱动的灾害链对岷江上游输沙量的影响[J].成都理工大学学报(自然科学版),2013,40(6):712-720.]
    [29]Tang C,Van Asch T W J,Chang M,et al.Catastrophic debris flows on 13 August 2010 in the Qingping area,southwestern China:The combined effects of a strong earthquake and subsequent rainstorms[J].Geomorphology,2012,139-140:559-576.
    [30]Chang Ming,Tang Chuan,Jiang Zhilin,et al.Dynamic evolution process of sediment supply for debris flow occurrence in Longchi of Dujiangyan,Wenchuan Earthquake area[J].Mountain Research,2014,32(1):89-97.[常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,32(1):89-97.]
    [31]Fan D,Cai G,Shang S,et al.Sedimentation processes and sedimentary characteristics of tidal bores along the north bank of the Qiantang Estuary[J].Chinese Science Bulletin,2012,57(13):1578-1589.
    [32]Nie Ruihua,Liu Xingnian,Yang Kejun,et al.Experimental investigation on the maximum bedload transprot rate during the process of armoring layer destruction[J].Journal of Sichuan University(Engineering Science Edition),2013,45(2):1-5.[聂锐华,刘兴年,杨克君,等.粗化层破坏过程中的最大推移质输沙率试验研究[J].四川大学学报(工程科学版),2013,45(2):1-5.]
    [33]Hou Ji,Liu Xingnian,Jiang Beihan,et al.Experimental study of water depth in steep channel flow carrying sediments by mountain torrents[J].Journal of Hydraulic Engineering,2012,43(Supp2):48-53.[侯极,刘兴年,蒋北寒,等.山洪携带泥沙引发的山区大比降河流水深变化规律研究[J].水利学报,2012,43(增刊2):48-53.]
    [34]Li Bin,Gu Aijun,Guo Zhixue,et al.Experimental study of water level in steep channel flow under high sediment concentration[J].Journal of Sichuan University(Engineering Science Edition),2015,47(Supp2):34-39.[李彬,顾爱军,郭志学,等.强输沙对陡坡河道水位激增的影响试验研究[J].四川大学学报(工程科学版),2015,47(增刊2):34-39.]
    [35]Roca M,Martin-Vide J P,Moreta P J M.Modelling a torrential event in a river confluence[J].Journal of Hydrology,2009,364(3/4):207-215.
    [36]Swanson B J,Meyer G.Tributary confluences and discontinuities in channel form and sediment texture:Rio Chama,NM[J].Earth Surface Processes&Landforms,2014,39(14):1927-1943.
    [37]Recking A.Influence of sediment supply on mountain streams bedload transport[J].Geomorphology,2012,175/176(6):139-150.
    [38]Dietrich W E,Kirchner J W,Ikeda H,et al.Sediment supply and the development of the coarse surface layer in gravelbedded rivers[J].Nature,1989,340(6230):215-217.
    [39]Madej M A,Sutherland D G,Lisle T E,et al.Channel responses to varying sediment input:A flume experiment modeled after Redwood Creek,California[J].Geomorphology,2009,103(4):507-519.
    [40]Chatanantiavet P,Parker G.Experimental study of bedrock channel alluviation under varied sediment supply and hydraulic conditions[J].Water Resources Research,2008,44(12):37-42.
    [41]Elgueta-Astaburuaga M A,Hassan M A.Experiment on temporal variation of bed load transport in response to changes in sediment supply in streams[J].Water Resources Research,2017,53(1):763-778.
    [42]Podolak C J P,Wilcock P R.Experimental study of the response of a gravel streambed to increased sediment supply[J].Earth Surface Processes and Landforms,2013,38(14):1748-1764.
    [43]Zen S,Zolezzi G,Tubino M.A theoretical analysis of river bars stability under changing channel width[J].Advances in Geosciences,2014,39:27-35.
    [44]Billi P.Flash flood sediment transport in a steep sand-bed ephemeral stream[J].International Journal of Sediment Research,2011,26(2):193-209.
    [45]Owczarek P.Hillslope deposits in gravel-bed rivers and their effects on the evolution of alluvial channel forms:Acase study from the Sudetes and Carpathian Mountains[J].Geomorphology,2008,98(1/2):111-125.
    [46]Tarolli P,Fontana G D.Hillslope-to-valley transition morphology:New opportunities from high resolution DTMs[J].Geomorphology,2009,113(1/2):47-56.
    [47]Huang R Q,Fan X M.The landside story[J].NatureGeoscience,2013,6(5):325-326.
    [48]Long D G F.Evidence of flash floods in Precambrian gravel dominated ephemeral river deposits[J].Sedimentary Geology,2017,347:53-66.
    [49]Ortega-Becerril J A,Garzon G,Bejar-Pizarro M,et al.Towards an increase of flash flood geomorphic effects due to gravel mining and ground subsidence in Nogalte stream(Murcia,SE Spain)[J].Natural Hazards and Earth System Sciences,2016,16(10):2273-2286.
    [50]Gan Binrui,Liu Xingnian,Yang Xingguo,et al.The impact of human activities on the occurrence of mountain flood hazards:Lessons from the 17 August 2015 flash flood/debris flow event in Xuyong County,south-western China[J].Geomatics Natural Hazards&Risk,2018,9(1):816-840.
    [51]Cao Shuyou,Liu Xingnian.Adaptive adjustment and mutation response of river bed within changing sediment supply in mountain river[J].Journal of Sichuan University(Engineering Science Edition),2016,48(1):1-7.[曹叔尤,刘兴年.泥沙补给变化下山区河流河床适应性调整与突变响应[J].四川大学学报(工程科学版),2016,48(1):1-7.]
    [52]Smith J A,Baeck M L,Steiner M,et al.Catastrophic rainfall from an upslope thunderstorm in the central Appalachians:The Rapidan storm of June 27,1995[J].Water Resources Research,1996,32(10):3099-3113.
    [53]Gaume E,Livet M,Desbordes M,et al.Hydrological analysis of the river Aude,France,flash flood on 12 and 13 November1999[J].Journal of Hydrology,2004,286(1):135-154.
    [54]Brauer C C,Teuling A J,Overeem A,et al.Anatomy of extraordinary rainfall and flash flood in a dutch lowland catchment[J].Hydrology and Earth System Sciences,2011,15(6):1991-2005.
    [55]Chen Guiya,Yuan Yaming.Research on critical precipitation amount computation method of mountain torrential flood disaster[J].Yangtze River,2005,36(12):40-43.[陈桂亚,袁雅鸣.山洪灾害临界雨量分析计算方法研究[J].人民长江,2005,36(12):40-43.]
    [56]Ye Yong,Wang Zhenyu,Fan Boqin.An analysis method for ascertain critical rainfall of mountain flood disaster of small watershed in ZheJiang Province[J].Journal of China Hydrology,2008,28(1):56-58.[叶勇,王振宇,范波芹.浙江省小流域山洪灾害临界雨量确定方法分析[J].水文,2008,28(1):56-58.]
    [57]Li Changzhi,Sun Dongya.Determination of flood warning index for mountain flood[J].China Water Resources,2012(9):54-56.[李昌志,孙东亚.山洪灾害预警指标确定方法[J].中国水利,2012(9):54-56.]
    [58]Lee K T,Chen N C,Chung Y R.Derivation of variable IUHcorresponding to time-varying rainfall intensity during storm[J].Hydrological Sciences Journal,2008,53(2):323-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700