Effects of energy deposition on mechanical properties of sodium borosilicate glass irradiated by three heavy ions: P, Kr, and Xe
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of energy deposition on mechanical properties of sodium borosilicate glass irradiated by three heavy ions: P, Kr, and Xe
  • 作者:Xin ; Du ; Tian-Tian ; Wang ; Bing-Huang ; Duan ; Xiao-Yang ; Zhang ; Feng-Fei ; Liu ; Chang-Lin ; Lan ; Guang-Fu ; Wang ; Liang ; Chen ; Hai-Bo ; Peng ; Tie-Shan ; Wang
  • 英文作者:Xin Du;Tian-Tian Wang;Bing-Huang Duan;Xiao-Yang Zhang;Feng-Fei Liu;Chang-Lin Lan;Guang-Fu Wang;Liang Chen;Hai-Bo Peng;Tie-Shan Wang;School of Nuclear Science and Technology, Lanzhou University;Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University;
  • 英文关键词:Borosilicate glass;;Hardness;;Young's modulus;;Irradiation;;Nuclear energy deposition
  • 中文刊名:HKXJ
  • 英文刊名:核技术(英文版)
  • 机构:School of Nuclear Science and Technology, Lanzhou University;Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University;
  • 出版日期:2019-07-15
  • 出版单位:Nuclear Science and Techniques
  • 年:2019
  • 期:v.30
  • 基金:supported by the National Natural Science Foundations of China(Nos.11505085 and 11505086);; the Fundamental Research Funds for the Central Universities(No.lzujbky-2018-72);; DSTI Foundation of Gansu(No.2018ZX-07)
  • 语种:英文;
  • 页:HKXJ201907011
  • 页数:9
  • CN:07
  • ISSN:31-1559/TL
  • 分类号:80-88
摘要
Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy deposition and nuclear energy deposition induced by the impact of heavy ions on the hardness and Young's modulus of sodium borosilicate glass were investigated. The work concentrates on sodium borosilicate glasses, henceforth termed NBS1(60.0% SiO_2, 15.0% B_2O_3, and 25.0% Na_2O in mol%). The NBS1 glasses were irradiated by P, Kr, and Xe ions with 0.3 MeV, 4 MeV, and 5 MeV, respectively.The hardness and Young's modulus of ion-irradiated NBS1 glasses were measured by nanoindentation tests. The relationships between the evolution of the hardness, the change in the Young's modulus of the NBS1 glasses, and the energy deposition were investigated. With the increase in the nuclear energy deposition, both the hardness and Young's modulus of NBS1 glasses dropped exponentially and then saturated. Regardless of the ion species, the nuclear energy depositions required for the saturation of hardness and Young's modulus were apparent at approximately 1.2 × 10~(20) keV/cm~3 and 1.8 × 10~(20) keV/cm~3,respectively. The dose dependency of the hardness and Young's modulus of NBS1 glasses was consistent with previous studies by Peuget et al. Moreover, the electronic energy loss is less than 4 keV/nm, and the electronic energy deposition is less than 3.0 × 10~(22) keV/cm~3 in this work. Therefore, the evolution of hardness and Young's modulus could have been primarily induced by nuclear energy deposition.
        Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy deposition and nuclear energy deposition induced by the impact of heavy ions on the hardness and Young's modulus of sodium borosilicate glass were investigated. The work concentrates on sodium borosilicate glasses, henceforth termed NBS1(60.0% SiO_2, 15.0% B_2O_3, and 25.0% Na_2O in mol%). The NBS1 glasses were irradiated by P, Kr, and Xe ions with 0.3 MeV, 4 MeV, and 5 MeV, respectively.The hardness and Young's modulus of ion-irradiated NBS1 glasses were measured by nanoindentation tests. The relationships between the evolution of the hardness, the change in the Young's modulus of the NBS1 glasses, and the energy deposition were investigated. With the increase in the nuclear energy deposition, both the hardness and Young's modulus of NBS1 glasses dropped exponentially and then saturated. Regardless of the ion species, the nuclear energy depositions required for the saturation of hardness and Young's modulus were apparent at approximately 1.2 × 10~(20) keV/cm~3 and 1.8 × 10~(20) keV/cm~3,respectively. The dose dependency of the hardness and Young's modulus of NBS1 glasses was consistent with previous studies by Peuget et al. Moreover, the electronic energy loss is less than 4 keV/nm, and the electronic energy deposition is less than 3.0 × 10~(22) keV/cm~3 in this work. Therefore, the evolution of hardness and Young's modulus could have been primarily induced by nuclear energy deposition.
引文
1.D.Manara,A.Grandjean,D.R.Neuville,Structure of borosilicate glasses and melts:a revision of the Yun,Bray and Dell model.J.Non-Cryst.Solids 355,2528-2531(2009).https://doi.org/10.1016/j.jnoncrysol.2009.08.033
    2.T.S.Wang,X.Du,W.Yuan et al.,Morphological study of borosilicate glass surface irradiated by heavy ions.Surf.Coat.Technol.306,245-250(2016).https://doi.org/10.1016/j.surfcoat.2016.06.018
    3.G.F.Zhang,T.S.Wang,K.J.Yang et al.,Raman spectra and nano-indentation of Ar-irradiated borosilicate glass.Nucl.Instrum.Methods B 316,218-221(2013).https://doi.org/10.1016/j.nimb.2013.09.020
    4.W.L.Gao,B.X.Xia,Q.X.Xu et al.,Immobilization of radioactive fluoride waste in aluminophosphate glass:a molecular dynamics simulation.Nucl.Sci.Tech.29,92(2018).https://doi.org/10.1007/s41365-018-0443-8
    5.Y.P.Sun,X.B.Xia,Y.B.Qiao et al.,Properties of phosphate glass waste forms containing fluorides from a molten salt reactor.Nucl.Sci.Tech.27,63(2016).https://doi.org/10.1007/s41365-016-0059-9
    6.G.K.Lockwood,S.H.Garofalini,Effect of moisture on the selfhealing of vitreous silica under irradiation.J.Nucl.Mater.400,73-78(2010).https://doi.org/10.1016/j.jnucmat.2010.02.012
    7.S.Peuget,N.J.Cachia,C.Je′gou et al.,Irradiation stability of R7T7-type borosilicate glass.J.Nucl.Mater.354,1-13(2006).https://doi.org/10.1016/j.jnucmat.2006.01.021
    8.R.A.B.Devine,Macroscopic and microscopic effects of radiation in amorphous SiO2.Nucl.Instrum.Methods B 91,378-390(1994).https://doi.org/10.1016/0168-583X(94)96253-7
    9.B.Boizot,S.Agnello,B.Reynard et al.,Raman spectroscopy study of beta-irradiated silica glass.J.Non-Cryst.Solids 325,22-28(2003).https://doi.org/10.1016/S0022-3093(03)00334-X
    10.S.Peuget,V.Broudic,C.Jegouu et al.,Effect of alpha radiation on the leaching behaviour of nuclear glass.J.Nucl.Mater.362,474-479(2007).https://doi.org/10.1016/j.jnucmat.2007.01.099
    11.W.J.Weber,H.J.Matzke,Indentation fracture toughness in nuclear waste glasses and ceramics:environmental and radiation effects.Euro.Appl.Res.Rep.7,207(1987)
    12.G.Karakurt,A.Abdelouas,J.P.Guin et al.,Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass.J.Nucl.Mater.2016(475),243-254(2016).https://doi.org/10.1016/j.jnucmat.2016.04.022
    13.S.Peuget,J.M.Delaye,C.Je′gou,Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation.J.Nucl.Mater.444,76-91(2014).https://doi.org/10.1016/j.jnucmat.2013.09.039
    14.K.J.Yang,T.S.Wang,G.F.Zhang et al.,Study of irradiation damage in borosilicate glass induced by He ions and electrons.Nucl.Instrum.Methods B 307,541-544(2013).https://doi.org/10.1016/j.nimb.2012.12.113
    15.S.Peuget,P.Y.Noel,J.L.Loubet et al.,Effects of deposited nuclear and electronic energy on the hardness of R7T7-type containment glass.Nucl.Instrum.Methods B 246,379-386(2006).https://doi.org/10.1016/j.nimb.2005.12.053
    16.A.H.Mir,I.Monnet,M.Toulemonde et al.,Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses:stopping power dependence of the mechanical properties.J.Nucl.Mater.469,244-250(2016).https://doi.org/10.1016/j.jnucmat.2015.12.004
    17.Y.Yang,J.Y.Yuan,C.Y.Feng et al.,Transmission efficiency improvement of the injector line of SFC by particle beam decorrelation.Nucl.Sci.Tech.26,060203(2015).https://doi.org/10.13538/j.1001-8042/nst.26.060203
    18.J.F.Ziegler,J.P.Biersack,The stopping and range of ions in matter.Nucl.Instrum.Methods B.F,93-129(1985).https://doi.org/10.1007/978-1-4615-8103-1_3
    19.D.Saad,H.Benkharfia,M.Izerrouken et al.,Displacement damage cross section and mechanical properties calculation of an Es-Salam research reactor aluminum vessel.Nucl.Sci.Tech.28,162(2017).https://doi.org/10.1007/s41365-017-0319-3
    20.W.Qi,Z.T.He,B.L.Zang et al.,Behaviors of fine(IG-110)and ultra-fine(HPG-510)grain graphite irradiated by 7 MeV Xe26?ions.Nucl.Sci.Tech.28,144(2017).https://doi.org/10.1007/s41365-017-0292-x
    21.W.C.Oliver,G.M.Pharr,An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.J.Mater.Res.7,1564-1583(1992).https://doi.org/10.1557/JMR.1992.1564
    22.W.C.Oliver,G.M.Pharr,Measurement of hardness and elastic modulus by instrumented indentation:advances in understanding and refinements to methodology.J.Mater.Res.19,3-20(2004).https://doi.org/10.1557/jmr.2004.19.1.3
    23.H.B.Peng,M.L.Sun,X.Du et al.,Variation of hardness and modulus of borosilicate glass irradiated with Kr ions.Nucl.Instrum.Methods B 406,561-565(2017).https://doi.org/10.1016/j.nimb.2017.04.057
    24.H.B.Peng,F.F.Liu,M.Guan,Variation of hardness and modulus of sodium borosilicate glass irradiated with different ions.Nucl.Instrum.Methods B 435,214-218(2018).https://doi.org/10.1016/j.nimb.2018.01.006
    25.J.D.Bonfils,S.Peuget,G.Panczer et al.,Effect of chemical composition on borosilicate glass behavior under irradiation.J.Non-Cryst.Solids 356,388-393(2010).https://doi.org/10.1016/j.jnoncrysol.2009.11.030
    26.L.Chen,W.Yuan,S.Nan et al.,Study of modifications in the mechanical properties of sodium aluminoborosilicate glass induced by heavy ions and electrons.Nucl.Instrum.Methods B370,42-48(2016).https://doi.org/10.1016/j.nimb.2016.01.007
    27.J.F.Denatale,D.G.Howitt,G.W.Aranold,Radiation damage in silicate glass.Radiat.Eff.98,63-70(1986).https://doi.org/10.1080/00337578608206098
    28.Y.Inagaki,H.Furuya,Y.Ono et al.,Effects of a-decay on mechanical properties of simulated nuclear waste glass.Mater.Res.Soc.Symp.Proc.294,191-198(1992).https://doi.org/10.1557/proc-294-191
    29.A.Abbas,Y.Serruys,D.Ghaleb et al.,Evolution of nuclear glass structure under a-irradiation.Nucl.Instrum.Methods B 166-167,445-450(2000)
    30.D.A.Kilymis,J.M.Delaye,Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest.J.Chem.Phys.141,014504(2014).https://doi.org/10.1063/1.4885850
    31.C.Mendoza,S.Peuget,T.Charpentier et al.,Oxide glass structure evolution under swift heavy ion irradiation.Nucl.Instrum.Methods B 325,54-65(2014).https://doi.org/10.1016/j.nimb.2014.02.002
    32.L.H.Kieu,J.M.Delaye,C.Stolz,Modeling the effect of composition and thermal quenching on the fracture behavior of borosilicate glass.J.Non-Cryst.Solids 358,3268-3279(2012).https://doi.org/10.1016/j.jnoncrysol.2012.07.037
    33.R.Boffy,S.Peuget,R.Schweins et al.,High thermal neutron flux effects on structural and macroscopic properties of alkaliborosilicate glasses used as neutron guide substrate.Nucl.Instrum.Methods B 374,14-19(2016).https://doi.org/10.1016/j.nimb.2015.10.011
    34.H.B.Peng,M.L.Sun,K.J.Yang et al.,Effect of irradiation on hardness of borosilicate glass.J.Non-Cryst.Solids 443,143-147(2016).https://doi.org/10.1016/j.jnoncrysol.2016.04.027

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700