衣原体包涵体膜蛋白的结构特征及生物学功能研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the structural characteristic and biological function of chlamydial inclusion membrane proteins
  • 作者:肖健 ; 王川 ; 吴移谋
  • 英文作者:XIAO Jian;WANG Chuan;WU Yi-mou;Institute of Pathogenic Biology, University of South China;
  • 关键词:衣原体 ; 包涵体膜蛋白 ; 生物学功能
  • 英文关键词:Chlamydia;;inclusion membrane proteins;;biological function
  • 中文刊名:ZRSZ
  • 英文刊名:Chinese Journal of Zoonoses
  • 机构:南华大学病原生物学研究所;
  • 出版日期:2019-02-27 14:57
  • 出版单位:中国人兽共患病学报
  • 年:2019
  • 期:v.35
  • 基金:鹦鹉热衣原体质粒蛋白生物学特性及功能研究(No.81671986)~~
  • 语种:中文;
  • 页:ZRSZ201904011
  • 页数:7
  • CN:04
  • ISSN:35-1284/R
  • 分类号:60-66
摘要
包涵体膜蛋白是一类由衣原体分泌并被转运至包涵体膜的衣原体特异性蛋白。进入宿主细胞后,衣原体即可分泌大量蛋白对包涵体膜进行修饰,这类蛋白位于衣原体-宿主细胞界面处,因此可在维持包涵体稳定性、衣原体营养摄取及与宿主细胞发生相互作用的过程中发挥重要功能。本文就包涵体膜蛋白的结构特征及生物学功能研究进展进行了综述,以期更深入了解这种衣原体效应蛋白。
        Inclusion membrane proteins(Inc proteins) are a subset of Chlamydiae-specific proteins that are secreted by the Chlamydia and are localized in inclusion membrane. Entering the host cell, chlamydia can secrete plenty of proteins to modify the inclusion membrane. The inclusion membrane is the interface between the Chlamydia and the host. Inc proteins are expected to play an important role in maintaining the stability of inclusion, in the uptake of nutrients required for Chlamydia, and in the interaction with host cells. This article briefly reviewed the research progress on Inc proteins in order to gain a deeper understanding of their structural characteristics and biological functions.
引文
[1] 李鹏,端青,宋立华.衣原体最新分类体系与分类鉴定方法研究进展[J].中国人兽共患病学报,2014,30(12):1262-1266.
    [2] Scidmore MA,Rockey DD,Fischer ER,et al.Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry[J].Infect Immun,1996,64(12):5366-5372.
    [3] Peters J,Wilson DP,Myers G,et al.Type III secretion à la Chlamydia[J].Trends Microbiol,2007,15(6):241-251.DOI:10.1016/ j.tim.2007.04.005
    [4] Rockey DD,Heinzen RA,Hackstadt T.Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells[J].Mol Microbiol,1995,15(4):617-626.DOI:10.1111/ j.1365-2958.1995.tb02371.x
    [5] Bannantine JP,Stamm WE,Suchland RJ,et al.Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates[J].Infect Immun,1998,66(12):6017-6021.
    [6] Scidmore-Carlson MA,Shaw EI,Dooley CA,et al.Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins[J].Mol Microbiol,1999,33(4):753-765.DOI:10.1046/ j.1365-2958.1999.01523.x
    [7] Subtil A,Parsot C,Dautry-Varsat A.Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery[J].Mol Microbiol,2001,39(3):792-800.DOI:10.1046/ j.1365-2958.2001.02272.x
    [8] Starnbach MN,Loomis WP,Ovendale P,et al.An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response[J].J Immunol,2003,171(9):4742-4749.DOI:10.4049/ jimmunol.171.9.4742
    [9] Bannantine JP,Griffiths RS,Viratyosin W,et al.A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane[J].Cell Microbiol,2000,2(1):35-47.DOI:10.1046/ j.1462-5822.2000.00029.x
    [10] Toh H,Miura K,Shirai M,et al.In silico inference of inclusion membrane protein family in obligate intracellular parasites chlamydiae[J].DNA Res,2003,10(1):9-17.DOI:10.1093/ dnares/ 10.1.9
    [11] Li Z,Chen C,Chen D,et al.Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome[J].Infect Immun,2008,76(6):2746-2757.DOI:10.1128/ IAI.00010-08
    [12] Weber MM,Bauler LD,Lam J,et al.Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis[J].Infect Immun,2015,83(12):4710-4718.DOI:10.1128/ IAI.01075-15
    [13] Dehoux P,Flores R,Dauga C,et al.Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates:the Inc proteins[J].BMC Genomics,2011,12(1):109.DOI:10.1186/ 1471-2164-12-109
    [14] Cortes C,Rzomp KA,Tvinnereim A,et al.Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases[J].Infect Immun,2007,75(12):5586-5596.DOI:10.1128/ IAI.01020-07
    [15] Stanhope R,Flora E,Bayne C,et al.IncV,a FFAT motif-containing Chlamydia protein,tethers the endoplasmic reticulum to the pathogen-containing vacuole[J].Proc Natl Acad Sci USA,2017,114(45):12039-12044.DOI:10.1073/ pnas.1709060114
    [16] Sun Q,Yong X,Sun X,et al.Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE[J].Signal Transduct Target Ther,2017,2:17030.DOI:10.1038/ sigtrans.2017.30
    [17] Elwell CA,Czudnochowski N,von DJ,et al.Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction[J].Elife,2017,6.pii:e22709.DOI:10.7554/ eLife.22709
    [18] Flores R,Zhong G.The Chlamydia pneumoniae inclusion membrane protein Cpn1027 interacts with host cell Wnt signaling pathway regulator cytoplasmic activation/proliferation-associated protein 2 (Caprin2)[J].PLoS One,2015,10(5):e0127909.DOI:10.1371/ journal.pone.0127909
    [19] Ronzone E,Paumet F.Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection[J].PLoS One,2013,8(7):e69769.DOI:10.1371/ journal.pone.0069769
    [20] Paul B,Kim HS,Kerr MC,et al.Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis[J].Elife,2017,6.pii:e22311.DOI:10.7554/ eLife.22311
    [21] Stenmark H.Rab GTPases as coordinators of vesicle traffic[J].Nat Rev Mol Cell Biol,2009,10(8):513-525.DOI:10.1038/ nrm2728
    [22] Capmany A,Damiani MT.Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication[J].PLoS One,2010,5(11):e14084.DOI:10.1371/ journal.pone.0014084
    [23] Gambarte TJ,Capmany A,Romao M,et al.The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions[J].J Cell Sci,2015,128(16):3068-3081.DOI:10.1242/ jcs.170092
    [24] Rzomp KA,Moorhead AR,Scidmore MA.The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229[J].Infect Immun,2006,74(9):5362-5373.DOI:10.1128/ IAI.00539-06
    [25] Bastidas RJ,Elwell CA,Engel JN,et al.Chlamydial intracellular survival strategies[J].Cold Spring Harb Perspect Med,2013,3(5):a010256.DOI:10.1101/ cshperspect.a010256
    [26] Damiani MT,Gambarte TJ,Capmany A.Targeting eukaryotic Rab proteins:a smart strategy for chlamydial survival and replication[J].Cell Microbiol,2014,16(9):1329-1338.DOI:10.1111/ cmi.12325
    [27] Paumet F,Wesolowski J,Garcia-Diaz A,et al.Intracellular bacteria encode inhibitory SNARE-like proteins[J].PLoS One,2009,4(10):e7375.DOI:10.1371/ journal.pone.0007375
    [28] Delevoye C,Nilges M,Dehoux P,et al.SNARE protein mimicry by an intracellular bacterium[J].PLoS Pathog,2008,4(3):e1000022.DOI:10.1371/ journal.ppat.1000022
    [29] Hackstadt T,Scidmore-Carlson MA,Shaw EI,et al.The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion[J].Cell Microbiol,1999,1(2):119-130.DOI:10.1046/ j.1462-5822.1999.00012.x
    [30] Weber MM,Noriea NF,Bauler LD,et al.A functional core of IncA is required for Chlamydia trachomatis inclusion fusion[J].J Bacteriol,2016,198(8):1347-1355.DOI:10.1128/ JB.00933-15
    [31] Aeberhard L,Banhart S,Fischer M,et al.The proteome of the isolated Chlamydia trachomatis containing vacuole reveals a complex trafficking platform enriched for retromer components[J].PLoS Pathog,2015,11(6):e1004883.DOI:10.1371/ journal.ppat.1004883
    [32] Mirrashidi KM,Elwell CA,Verschueren E,et al.Global mapping of the Inc-Human interactome reveals that retromer restricts Chlamydia Infection[J].Cell Host Microbe,2015,18(1):109-121.DOI:10.1016/ j.chom.2015.06.004
    [33] Wang J,Fedoseienko A,Chen B,et al.Endosomal receptor trafficking:Retromer and beyond[J].Traffic,2018,19(8):578-590.DOI:10.1111/ tra.12574
    [34] B?cker S,Heurich A,Franke C,et al.Chlamydia psittaci inclusion membrane protein IncB associates with host protein Snapin[J].Int J Med Microbiol,2014,304(5-6):542-553.DOI:10.1016/ j.ijmm.2014.03.005
    [35] Mital J,Miller NJ,Fischer ER,et al.Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network[J].Cell Microbiol,2010,12(9):1235-1249.DOI:10.1111/ j.1462-5822.2010.01465.x
    [36] Mital J,Lutter EI,Barger AC,et al.Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1)[J].Biochem Biophys Res Commun,2015,462(2):165-170.DOI:10.1016/ j.bbrc.2015.04.116
    [37] Helle SC,Kanfer G,Kolar K,et al.Organization and function of membrane contact sites[J].Biochim Biophys Acta,2013,1833(11):2526-2541.DOI:10.1016/ j.bbamcr.2013.01.028
    [38] Derré I,Swiss R,Agaisse H.The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites[J].PLoS Pathog,2011,7(6):e1002092.DOI:10.1371/ journal.ppat.1002092
    [39] Agaisse H,Derré I.Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane[J].Infect Immun,2014,82(5):2037-2047.DOI:10.1128/ IAI.01530-14
    [40] Hanada K,Kumagai K,Yasuda S,et al.Molecular machinery for non-vesicular trafficking of ceramide[J].Nature,2003,426(6968):803-809.DOI:10.1038/ nature02188
    [41] Agaisse H,Derré I.STIM1 is a novel component of ER-Chlamydia trachomatis inclusion membrane contact sites[J].PLoS One,2015,10(4):e0125671.DOI:10.1371/ journal.pone.0125671
    [42] Pirbhai M,Dong F,Zhong Y,et al.The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells[J].J Biol Chem,2006,281(42):31495-31501.DOI:10.1074/ jbc.M602796200
    [43] Sharma M,Machuy N,B?hme L,et al.HIF-1α is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells[J].Cell Microbiol,2011,13(10):1573-1585.DOI:10.1111/ j.1462-5822.2011.01642.x
    [44] Scidmore MA,Hackstadt T.Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG[J].Mol Microbiol,2001,39(6):1638-1650.DOI:10.1046/ j.1365-2958.2001.02355.x
    [45] Sixt BS,Bastidas RJ,Finethy R,et al.The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs[J].Cell Host Microbe,2017,21(1):113-121.DOI:10.1016/ j.chom.2016.12.002
    [46] Weber MM,Lam JL,Dooley CA,et al.Absence of specific Chlamydia trachomatis inclusion membrane proteins triggers premature inclusion membrane lysis and host cell death[J].Cell Rep,2017,19(7):1406-1417.DOI:10.1016/ j.celrep.2017.04.058
    [47] Wolf K,Plano GV,Fields KA.A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1[J].Cell Microbiol,2009,11(5):769-779.DOI:10.1111/ j.1462-5822.2009.01290.x
    [48] Fling SP,Sutherland RA,Steele LN,et al.CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis[J].Proc Natl Acad Sci U S A,2001,98(3):1160-1165.DOI:10.1073/ pnas.98.3.1160
    [49] Hybiske K,Stephens RS.Mechanisms of host cell exit by the intracellular bacterium Chlamydia[J].Proc Natl Acad Sci USA,2007,104(27):11430-11435.DOI:10.1073/ pnas.0703218104
    [50] Lutter EI,Barger AC,Nair V,et al.Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms[J].Cell Rep,2013,3(6):1921-1931.DOI:10.1016/ j.celrep.2013.04.027
    [51] Nguyen PH,Lutter EI,Hackstadt T.Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation[J].PLoS Pathog,2018,14(3):e1006911.DOI:10.1371/ journal.ppat.1006911

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700