改良型土壤渗滤系统处理生活污水脱氮除磷
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:NITROGEN AND PHOSPHORUS REMOVAL OF DOMESTIC SEWAGE TREATED BY MODIFIED SOIL INFILTRATION SYSTEM
  • 作者:吕晶晶 ; 窦艳艳 ; 张列宇 ; 席北斗 ; 于水利 ; 侯立安
  • 英文作者:LV Jing-jing;DOU Yan-yan;ZHANG Lie-yu;XI Bei-dou;YU Shui-li;HOU Li-an;Zhongyuan Institute of Technology;Environmental Science and Engineering College,Tongji University;Groundwater and Environmental Systems Engineering Innovation Base,Chinese Research Academy of Environmental Sciences;Institute of Logistics Science and Technology of the PLA Rocket Force;
  • 关键词:土壤渗滤 ; 生物脱氮 ; 生活污水 ; 微纳米曝气
  • 英文关键词:soil infiltration;;biological denitrification;;domestic sewage;;micro-nano aeration
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:中原工学院;同济大学环境科学与工程学院;中国环境科学研究院地下水与环境系统工程创新基地;火箭军后勤科学技术研究所;
  • 出版日期:2018-03-22
  • 出版单位:环境工程
  • 年:2018
  • 期:v.36;No.237
  • 基金:河南省高等学校重点科研项目(16A560026);; 河南省高等学校供热空调重点学科开发实验室项目(2017HAC108);; 中国纺织工业联合会科技指导项目(2016039)
  • 语种:中文;
  • 页:HJGC201803008
  • 页数:6
  • CN:03
  • ISSN:11-2097/X
  • 分类号:43-48
摘要
为了研究土壤渗滤系统的净化效果,采用微纳米曝气预处理+土壤渗滤组合工艺处理模拟生活污水,考察其对脱氮除磷过程的影响。试验在2个尺寸均为300 mm×2 400 mm的有机玻璃柱R1、R2内开展,在R2反应器前设置微纳米曝气对进水做预处理。试验结果表明:在水力负荷为4 L/d的条件下,前置微纳米曝气改良型土壤渗滤系统处理生活污水取得了良好的处理效果,R2对化学需氧量(COD)、氨氮(NH_4~+-N)、总氮(TN)和总磷(TP)的平均去除率分别可达83.7%、96.5%、66.4%和92.6%,优于R1的去除效率。微生物学试验证明:2个系统中均存在厌氧氨氧化细菌,且在土壤表层以下0~30 cm处硝化-反硝化及厌氧氨氧化等脱氮反应阶段最为剧烈。前置微纳米曝气改良型土壤渗滤系统克服了传统土壤渗滤系统易堵塞、处理负荷低、脱氮效果差等缺点,对于农村生活污水治理具有推广应用价值。
        In order to study the purifying effect of soil filtration system,the micro-nano aeration pretreatment and soil infiltration process were used to treat simulated domestic sewage,and its effect on nitrogen and phosphorus removal process was studied. The experiment was carried out in two organic glass columns R1 and R2 with dimensions of 300 mm ×2 400 mm,and the micro-nano aeration was set before the R2 reactor to do pretreatment of inflow. The results showed that under the condition of hydraulic load of 4 L/d,a good effect was reached by the preposed micro-nano aeration improved soil infiltration system to treat the domestic sewage. By R2,the average removal rate of chemical oxygen demand( COD),ammonia nitrogen( NH_4~+-N),total nitrogen( TN) and total phosphorus( TP) was 83. 7%,96. 5%,66. 4%,92. 6%,respectively,which was better than the removal efficiency of R1. Microbiological experiments showed that there were anammox bacteria in both systems,and nitrification-denitrification and anammox and other denitrification reaction were the most fierce at0 ~ 30 cm below the soil surface. The preposed micro-nano aeration improved soil infiltration system and overcomed the shortcomings of traditional soil filtration system,such as easy clogging,low processing load and poor denitrification effect,which had popularization and application value for rural domestic sewage treatment.
引文
[1]Liang Zhu,Liu Junxin.Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation(Anammox)combined with soil infiltration system[J].Journal of Hazardous Materials,2008,151:202-212.
    [2]成徐洲,吴天宝,陈天柱,等.土壤渗滤处理技术研究现状与进展[J].环境科学研究,1999,12(4):33-36.
    [3]廖汝武,魏明蓉.广西农村生活污水处理技术的探讨[J].资源与环境保护,2014,2:162-163.
    [4]Ye Chun,Hu Zhanbo,Kong Hainan,et al.A new soil infiltration technology for decentralized sewage treatment:Two-stage anaerobic tank and soil trench system[J].Pedosphere,2008,18(3):401-408.
    [5]李屹,沈剑,林燕,等.土壤渗滤系统中污染物去除效果分析[J].生态与农村环境学报,2013,29(6):738-742.
    [6]张荣社,李广贺,周琪,等.潜流人工湿地负荷变化对脱氮效果的影响研究[J].环境科学,2006,27(2):253-256.
    [7]张建,黄霞,施汉昌,等.地下渗滤系统在污水处理中的应用研究进展[J].环境污染治理技术与设备,2002,3(4):47-51.
    [8]李英华,孙铁珩,李海波,等.地下渗滤系统脱氮的研究进展[J].河南师范大学学报(自然科学版),2009,37(4):87-91.
    [9]李英华,李海波,孙铁珩,等.进水负荷对地下渗滤系统ORP及脱氮效果的影响[J].中国给水排水,2012,28(17):117-120.
    [10]李海波,李英华,孙铁珩,等.污水地下渗滤系统脱氮效果及动力学过程[J].生态学报,2011,31(24):7351-7356.
    [11]王振,刘超翔,董健,等.分流比对土壤渗滤系统脱氮效果的影响研究[J].环境科学学报,2013,33(7):1926-1931.
    [12]侯立安.小型污水处理与回用技术及装置[M].北京:化学工业出版社,2003.
    [13]郑向勇,严立,王崇,等.地下渗滤污水处理系统的工艺类型[J].中国给水排水,2006,22(6):11-14.
    [14]Kong Hainan,Yuzuru K,Motoyukim,et al.Study of the characteristics of CH4and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process[J].Science of the Total Environment,2002,290:59-67.
    [15]Lucas A,Rodriguez L,Villasnor J,et al.Denitrification potential of industrial wastewaters[J].Water Research,2005,39:3715-3721.
    [16]Kadlec R,Ttanner C,Hally V,et al.Nitrogen spiraling in subsurface low constructed wetlands implication for treatment repines[J].Ecological Engineering,2005,25:365-371.
    [17]Arve H,Adam M,Lasse V.A high-performance compact filter system treating domestic wastewater[J].Ecological Engineering,2006,28(2):374-379.
    [18]Li Hengzhen,Hu Liming,Song Dejun,et al.Subsurface transport behavior of micro-nano bubbles and potential applications for groundwater remediation[J].International Journal of Envrionmental Research and Public Health,2014,11(1):473-486.
    [19]Ashutosh Agarwal,Wun Jern Ng,Yu Liu.Principle and applications of microbubble and nanobubble technology for water treatment[J].Chemosphere,2011,84(9):1175-1180.
    [20]Li Pan,Song Yuan,Yu Shuili.Removal of Microcystis aeruginosa using hydrodynamic cavitation:Performance and mechanisms[J].Water Research,2014,62:241-248.
    [21]Li Pan,Song Yuan,Wang Shuai,et al.Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation[J].Ultrasonics Sonochemistry,2015,22:132-138.
    [22]Li Pan,Masayoshi Takahashi,Kaneo Chiba.Enhanced freeradical generation by shrinking microbubbles using a copper catalyst[J].Chemosphere,77(8):1157-1160.
    [23]LI Pan,Masayoshi Takahashi,Kaneo Chiba.Degradation of phenol by the collapse of microbubbles[J].Chemosphere,2009,75(10):1371-1375.
    [24]王郑,崔康平,许为义,等.改良型土壤渗滤系统处理农家乐污水[J].环境工程学报,2017.11(4):2054-2058.
    [25]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:107-696.
    [26]Zhi Wei,Ji Guodong.Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J].Water Research,2014,64:32-41.
    [27]And F S,Horne A J.Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification[J].Environmental Science&Technology,2002,36(6):1231-1237.
    [28]Cuyk S V,Siegrist R,Logan A,et al.Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems[J].Water Research,2001,35(4):953-964.
    [29]叶春,张保君,李春华,等.微纳米曝气对植物浮床处理支浜水脱氮效果的影响[J].环境科学研究,2012,25(10):1173-1179.
    [30]Yuan Haiping,Nie Junying,Zhu Nanwen,et al.Effect of temperature on the wastewater treatment of a novel anti-clogging soil infiltration system[J].Ecological Engineering,2013,57:375-379.
    [31]Lei Zhongfang,Wu Ting,Zhang Yi,et al.Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios[J].Bioresource Technology,2013,128:774-778.
    [32]Chen Peizhen,Cui Jianyu,Hu Lin,et al.Nitrogen removal improvement by adding peat in deep soil of subsurface wastewater infiltration system[J].Journal of Integrative Agriculture,2014,13(5):1113-1120.
    [33]Kong Zhe,Feng Chuanping,Chen Nan,et al.A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification(SISSAD)for domestic wastewater treatment[J].Bioresource Technology,2014,159:272-279.
    [34]庄林杰,夏超,田晴,等.高通量测序技术研究典型湖泊岸边陆向深层土壤中厌氧氨氧化细菌的群落结构[J].环境科学研究,2017,37(1):262-271.
    [35]Wang Shanyun,Radny Dirk,Huang Shuangbing,Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils[J].Scientific Reports,2017,7:1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700